Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jagger Harvey is active.

Publication


Featured researches published by Jagger Harvey.


PLOS ONE | 2011

An Antiviral Defense Role of AGO2 in Plants

Jagger Harvey; Mathew G. Lewsey; Kanu Patel; Jack H. Westwood; Susanne Heimstädt; John P. Carr; David C. Baulcombe

Background Argonaute (AGO) proteins bind to small-interfering (si)RNAs and micro (mi)RNAs to target RNA silencing against viruses, transgenes and in regulation of mRNAs. Plants encode multiple AGO proteins but, in Arabidopsis, only AGO1 is known to have an antiviral role. Methodology/Principal Findings To uncover the roles of specific AGOs in limiting virus accumulation we inoculated turnip crinkle virus (TCV) to Arabidopsis plants that were mutant for each of the ten AGO genes. The viral symptoms on most of the plants were the same as on wild type plants although the ago2 mutants were markedly hyper-susceptible to this virus. ago2 plants were also hyper-susceptible to cucumber mosaic virus (CMV), confirming that the antiviral role of AGO2 is not specific to a single virus. For both viruses, this phenotype was associated with transient increase in virus accumulation. In wild type plants the AGO2 protein was induced by TCV and CMV infection. Conclusions/Significance Based on these results we propose that there are multiple layers to RNA-mediated defense and counter-defense in the interactions between plants and their viruses. AGO1 represents a first layer. With some viruses, including TCV and CMV, this layer is overcome by viral suppressors of silencing that can target AGO1 and a second layer involving AGO2 limits virus accumulation. The second layer is activated when the first layer is suppressed because AGO2 is repressed by AGO1 via miR403. The activation of the second layer is therefore a direct consequence of the loss of the first layer of defense.


Aob Plants | 2013

Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

Laban F. Turyagyenda; Elizabeth Balyejusa Kizito; Morag Ferguson; Yona Baguma; Morris Agaba; Jagger Harvey; David S. Osiru

While the physiological basis of cassava drought tolerance has been characterized, evaluation of the molecular responses to drought stress remains largely unexplored. This study provides an initial characterization of the molecular response of cassava to drought stress resembling field conditions. The candidate drought tolerance genes in cassava identified in this study can be used as expression-based markers of drought tolerance in cassava or be tested in the context of breeding and engineering drought tolerance in transgenics.


Toxins | 2013

Assessment of Aflatoxin Contamination of Maize, Peanut Meal and Poultry Feed Mixtures from Different Agroecological Zones in Cameroon

J. R. Kana; Benoit Gnonlonfin; Jagger Harvey; James Wainaina; Immaculate Wanjuki; Robert A. Skilton; Alexis Teguia

Mycotoxins affect poultry production by being present in the feed and directly causing a negative impact on bird performance. Carry-over rates of mycotoxins in animal products are, in general, small (except for aflatoxins in milk and eggs) therefore representing a small source of mycotoxins for humans. Mycotoxins present directly in human food represent a much higher risk. The contamination of poultry feed by aflatoxins was determined as a first assessment of this risk in Cameroon. A total of 201 samples of maize, peanut meal, broiler and layer feeds were collected directly at poultry farms, poultry production sites and poultry feed dealers in three agroecological zones (AEZs) of Cameroon and analyzed for moisture content and aflatoxin levels. The results indicate that the mean of the moisture content of maize (14.1%) was significantly (P < 0.05) higher than all other commodities (10.0%–12.7%). Approximately 9% of maize samples were positive for aflatoxin, with concentrations overall ranging from <2 to 42 µg/kg. Most of the samples of peanut meal (100%), broiler (93.3%) and layer feeds (83.0%) were positive with concentrations of positive samples ranging from 39 to 950 µg/kg for peanut meal, 2 to 52 µg/kg for broiler feed and 2 to 23 µg/kg for layer feed. The aflatoxin content of layer feed did not vary by AEZ, while the highest (16.8 µg/kg) and the lowest (8.2 µg/kg) aflatoxin content of broiler feed were respectively recorded in Western High Plateau and in Rainforest agroecological zones. These results suggest that peanut meal is likely to be a high risk feed, and further investigation is needed to guide promotion of safe feeds for poultry in Cameroon.


Phytopathology | 2014

Extent and Drivers of Mycotoxin Contamination: Inferences from a Survey of Kenyan Maize Mills

Samuel Mutiga; V. Were; V. Hoffmann; Jagger Harvey; Michael G. Milgroom; Rebecca J. Nelson

The prevalence of aflatoxin and fumonisin was investigated in maize intended for immediate human consumption in eastern Kenya at a time in 2010 when an aflatoxin outbreak was recognized. Samples were collected from people who brought their maize for processing at local commercial mills. Sites were selected using a geographical information system overlay of agroecological zones and Kenyas administrative districts. Interviews and collection of maize flour samples was conducted from 1,500 people who processed maize at 143 mills in 10 administrative districts. Mycotoxins were analyzed using enzyme-linked immunosorbent assays for aflatoxin and fumonisin, leading to detection at levels above the respective maximum tolerable limits in 39 and 37% of the samples, respectively. Samples with aflatoxin contamination above the legal limit ranged between 22 and 60% across the districts. A higher occurrence of aflatoxin was associated with smaller maize farms, lower grain yield, and monocropping systems, while a larger magnitude of the toxin was observed in the subhumid agroecological zone, in samples with more broken kernels, and, curiously, less maize ear damage at harvest. Analysis of paired grain samples (visually sorted and unsorted) showed that sorting reduced fumonisin by 65%, from above to below the legal limit of 1,000 ppb. Sorting did not, however, reduce aflatoxin levels. Although the aflatoxin problem is widely acknowledged, the high prevalence of fumonisin has not previously been reported. There is need for surveillance of the two mycotoxins and establishment of intervention strategies to reach vulnerable small-scale farmers.


Advances in Virus Research | 2015

Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus: Relationships, biology, and prospects for control

Elizabeth A. Worrall; Francis O. Wamonje; Gerardine Mukeshimana; Jagger Harvey; John P. Carr; Neena Mitter

The closely related potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) are major constraints on common bean (Phaseolus vulgaris) production. Crop losses caused by BCMV and BCMNV impact severely not only on commercial scale cultivation of this high-value crop but also on production by smallholder farmers in the developing world, where bean serves as a key source of dietary protein and mineral nutrition. In many parts of the world, progress has been made in combating BCMV through breeding bean varieties possessing the I gene, a dominant gene conferring resistance to most BCMV strains. However, in Africa, and in particular in Central and East Africa, BCMNV is endemic and this presents a serious problem for deployment of the I gene because this virus triggers systemic necrosis (black root disease) in plants possessing this resistance gene. Information on these two important viruses is scattered throughout the literature from 1917 onward, and although reviews on resistance to BCMV and BCMNV exist, there is currently no comprehensive review on the biology and taxonomy of BCMV and BCMNV. In this chapter, we discuss the current state of our knowledge of these two potyviruses including fundamental aspects of classification and phylogeny, molecular biology, host interactions, transmission through seed and by aphid vectors, geographic distribution, as well as current and future prospects for the control of these important viruses.


Aob Plants | 2013

Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation

Bramwel Wanjala; Meshack Obonyo; Francis N. Wachira; Alice Muchugi; Margaret Mulaa; Jagger Harvey; Robert A. Skilton; J. Proud; Jean Hanson

Napier grass is an important forage for smallholder dairy farms. However, there has been a comparatively low effort to improve Napier grass. It is necessary to strengthen forage breeding programs for development of cultivars with superior traits like. With a high rich gene pool; correct identification of Napier grass accessions is a prerequisite because the existing germplasm information is scanty and cannot be relied upon for crop improvement. Thus the genetic assessment of various Napier grass accessions from the Eastern Africa region is important for correct cultivar identification in order to fully exploit them in crop improvement strategies.


Molecular Plant-microbe Interactions | 2017

Foundational and translational research opportunities to improve plant health

Richard W. Michelmore; Gitta Coaker; Rebecca Bart; Gwyn A. Beattie; Andrew F. Bent; Duncan D. Cameron; Jeffery L. Dangl; Savithramma P. Dinesh-Kumar; Rob Edwards; Sebastian Eves-Van Den Akker; Walter Gassmann; Jean T. Greenberg; Linda Hanley-Bowdoin; Richard J. Harrison; Ping He; Jagger Harvey; Alisa Huffaker; Scot H. Hulbert; Roger W. Innes; Jonathan D. G. Jones; Isgouhi Kaloshian; Sophien Kamoun; Fumiaki Katagiri; Jan E. Leach; Wenbo Ma; John M. McDowell; June Medford; Blake C. Meyers; Rebecca J. Nelson; Richard P. Oliver

Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.


Journal of Economic Entomology | 2015

Diversity of Thrips Species and Vectors of Tomato Spotted Wilt Virus in Tomato Production Systems in Kenya

Isaac Macharia; David Backhouse; Rob Skilton; Elijah Ateka; Shu-Biao Wu; Moses N. Njahira; Solomon Maina; Jagger Harvey

ABSTRACT Thrips have been recognized as primary vectors of tomato spotted wilt virus (TSWV) with Frankliniella occidentalis (Pergande) reported as the most important and efficient vector, while other species such as Thrips tabaci Lindeman also include populations that can vector the virus. A study was undertaken to establish the diversity of thrips and presence of vectors for TSWV in four major tomato production areas in Kenya. The cytochrome oxidase 1 (CO1) gene was used to generate sequences from thrips samples collected from tomatoes and weeds, and phylogenetic analysis done to establish the variation within potential vector populations. Ceratothripoides brunneus Bagnall was the predominant species of thrips in all areas. F. occidentalis and T. tabaci were abundant in Nakuru, Kirinyaga, and Loitokitok but not detected at Bungoma. Other vectors of tospoviruses identified in low numbers were Frankliniella schultzei (Trybom) and Scirtothrips dorsalis Hood. Variation was observed in T. tabaci, F. occidentalis, and F. schultzei. Kenyan specimens of T. tabaci from tomato belonged to the arrhenotokous group, while those of F. occidentalis clustered with the Western flower thrips G group. The detection of RNA of TSWV in both of these species of thrips supported the role they play as vectors. The study has demonstrated the high diversity of thrips species in tomato production and the occurrence of important vectors of TSWV and other tospoviruses.


Phytopathology | 2017

Assessment of the Virulence Spectrum and Its Association with Genetic Diversity in Magnaporthe oryzae Populations from Sub-Saharan Africa

Samuel Mutiga; Felix Rotich; Veena Devi Ganeshan; David Thuranira Mwongera; Emmanuel M. Mgonja; Vincent Mbashira Were; Jagger Harvey; Bo Zhou; L.A. Wasilwa; Ibrahima Ouedraogo; Guo-Liang Wang; Thomas K. Mitchell; Nicholas J. Talbot; J. C. Correll

A collection of 122 isolates of Magnaporthe oryzae, from nine sub-Saharan African countries, was assessed for virulence diversity and genetic relatedness. The virulence spectrum was assessed by pathotype analysis with a panel of 43 rice genotypes consisting of differential lines carrying 24 blast resistance genes (R-genes), contemporary African rice cultivars, and susceptible checks. The virulence spectrum among isolates ranged from 5 to 80%. Five isolates were avirulent to the entire rice panel, while two isolates were virulent to ∼75% of the panel. Overall, cultivar 75-1-127, the Pi9 R-gene donor, was resistant to all isolates (100%), followed by four African rice cultivars (AR105, NERICA 15, 96%; NERICA 4, 91%; and F6-36, 90%). Genetic relatedness of isolates was assessed by single nucleotide polymorphisms derived from genotyping-by-sequencing and by vegetative compatibility tests. Phylogenetic analysis of SNPs of a subset of isolates (n = 78) revealed seven distinct clades that differed in virulence. Principal component analysis showed isolates from East Africa were genetically distinct from those from West Africa. Vegetative compatibility tests of a subset of isolates (n = 65) showed no common groups among countries. This study shows that blast disease could be controlled by pyramiding of Pi9 together with other promising R-genes into rice cultivars that are adapted to East and West African regions.


Mycologia | 2015

Genetic diversity of Kenyan native oyster mushroom (Pleurotus)

Ojwang D. Otieno; Calvin Onyango; Justus Onguso; Lexa G. Matasyoh; Bramwel W. Wanjala; Mark Wamalwa; Jagger Harvey

Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation.

Collaboration


Dive into the Jagger Harvey's collaboration.

Top Co-Authors

Avatar

Glen Fox

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Wainaina

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross Darnell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

T.D.O Falade

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Appolinaire Djikeng

International Livestock Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge