Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jai Ramesar is active.

Publication


Featured researches published by Jai Ramesar.


Nature Protocols | 2006

High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei

Chris J. Janse; Jai Ramesar; Andrew P. Waters

This protocol describes a method of genetic transformation for the rodent malaria parasite Plasmodium berghei with a high transfection efficiency of 10−3–10−4. It provides methods for: (i) in vitro cultivation and purification of the schizont stage;(ii) transfection of DNA constructs containing drug-selectable markers into schizonts using the nonviral Nucleofector technology; and (iii) injection of transfected parasites into mice and subsequent selection of mutants by drug treatment in vivo. Drug selection is described for two (antimalarial) drugs, pyrimethamine and WR92210. The drug-selectable markers currently in use are the pyrimethamine-resistant dihydrofolate reductase (dhfr) gene of Plasmodium or Toxoplasma gondii and the DHFR gene of humans that confer resistance to pyrimethamine and WR92210, respectively. This protocol enables the generation of transformed parasites within 10–15 d. Genetic modification of P. berghei is widely used to investigate gene function in Plasmodium, and this protocol for high-efficiency transformation will enable the application of large-scale functional genomics approaches.


PLOS ONE | 2009

Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

Ivo Ploemen; Miguel Prudêncio; Bruno Douradinha; Jai Ramesar; Jannik Fonager; Geert-Jan van Gemert; Adrian J. F. Luty; Cornelus C. Hermsen; Robert W. Sauerwein; Fernanda G. Baptista; Maria M. Mota; Andrew P. Waters; Ivo Que; Clemens W.G.M. Löwik; Shahid M. Khan; Chris J. Janse; Blandine Franke-Fayard

The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasites life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.


Molecular and Biochemical Parasitology | 1993

Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei

Michael G. Paton; Guy C. Barker; Hiroyuki Matsuoka; Jai Ramesar; Chris J. Janse; Andrew P. Waters; Robert E. Sinden

The sexual stage-specific protein Pbs21 of the rodent malaria parasite Plasmodium berghei, expressed on the surface of zygotes and ookinetes, has been shown to induce an effective and long-lasting transmission blocking immunity. The gene encoding Pbs21 was cloned by screening a cDNA library prepared from enriched zygotes and ookinetes using the monoclonal antibody 13.1.15, which is capable of blocking subsequent parasite sexual development in the mosquito vector. The Pbs21 gene encoded a protein of 213 amino acids which contained a putative amino-terminal signal sequence and a putative carboxy-terminal hydrophobic membrane anchor. The amino-acid sequence was characterised by a large number of cysteine residues which were organized into 4 epidermal growth factor-like domains. The spacing of the cysteine residues was highly conserved when compared to the 25-kDa ookinete proteins of Plasmodium falciparum (Pfs25), Plasmodium reichenowi (Prs25) and Plasmodium gallinaceum (Pgs25) which were approximately 45%, 45% and 40% homologous to Pbs21 respectively. The gene is located on chromosome 5 and cross-hybridizes to a similarly defined gene unit in the other rodent malaria species Plasmodium chabaudi, Plasmodium vinckei and Plasmodium yoelii. The gene is internally disposed and not in the subtelomeric region of chromosome 5. The gene is transcribed in a stage-specific manner giving rise to an abundant 1.5-kb transcript. This mRNA is synthesised in the precursor cells to female gametes (gametocytes) however the protein is observed only after activation of the gametes, suggesting that translation of the mRNA is controlled by a post-transcriptional process. The Pbs21 gene and the P. berghei parasite system provide an excellent vehicle for the study of stage-specific transcriptional and post-transcriptional control in malaria.


PLOS Pathogens | 2005

A Plasmodium Whole-Genome Synteny Map: Indels and Synteny Breakpoints as Foci for Species-Specific Genes

Taco W. A. Kooij; Jane M. Carlton; Shelby Bidwell; Neil Hall; Jai Ramesar; Chris J. Janse; Andrew P. Waters

Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs) revealed a core set of 4,500 Plasmodium orthologs located in the highly syntenic central regions of the chromosomes that sharply defined the boundaries of the variable subtelomeric regions. We used composite RMP contigs, based on partial DNA sequences of three RMPs, to generate a whole-genome synteny map of P. falciparum and the RMPs. The core regions of the 14 chromosomes of P. falciparum and the RMPs are organized in 36 synteny blocks, representing groups of genes that have been stably inherited since these malaria species diverged, but whose relative organization has altered as a result of a predicted minimum of 15 recombination events. P. falciparum-specific genes and gene families are found in the variable subtelomeric regions (575 genes), at synteny breakpoints (42 genes), and as intrasyntenic indels (126 genes). Of the 168 non-subtelomeric P. falciparum genes, including two newly discovered gene families, 68% are predicted to be exported to the surface of the blood stage parasite or infected erythrocyte. Chromosomal rearrangements are implicated in the generation and dispersal of P. falciparum-specific gene families, including one encoding receptor-associated protein kinases. The data show that both synteny breakpoints and intrasyntenic indels can be foci for species-specific genes with a predicted role in host-parasite interactions and suggest that, besides rearrangements in the subtelomeric regions, chromosomal rearrangements may also be involved in the generation of species-specific gene families. A majority of these genes are expressed in blood stages, suggesting that the vertebrate host exerts a greater selective pressure than the mosquito vector, resulting in the acquisition of diversity.


PLOS Pathogens | 2008

The Malaria Secretome: From Algorithms to Essential Function in Blood Stage Infection

Christiaan van Ooij; Pamela A. Tamez; Souvik Bhattacharjee; N. Luisa Hiller; Travis Harrison; Konstantinos Liolios; Taco W. A. Kooij; Jai Ramesar; Bharath Balu; John H. Adams; Andrew P. Waters; Chris J. Janse; Kasturi Haldar

The malaria agent Plasmodium falciparum is predicted to export a “secretome” of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested. We present here an expanded secretome that is optimized for both P. falciparum signal sequences and the HT-motif. From the most conservative of these three secretome predictions, we identify 11 proteins that are preserved across human- and rodent-infecting Plasmodium species. The conservation of these proteins likely indicates that they perform important functions in the interaction with and remodeling of the host erythrocyte important for all Plasmodium parasites. Using the piggyBac transposition system, we validate their export and find a positive prediction rate of ∼70%. Even for proteins identified by all secretomes, the positive prediction rate is not likely to exceed ∼75%. Attempted deletions of the genes encoding the conserved exported proteins were not successful, but additional functional analyses revealed the first conserved secretome function. This gave new insight into mechanisms for the assembly of the parasite-induced tubovesicular network needed for import of nutrients into the infected erythrocyte. Thus, genomic screens combined with functional assays provide unexpected and fundamental insights into host remodeling by this major human pathogen.


PLOS Pathogens | 2010

Three Members of the 6-cys Protein Family of /Plasmodium/ Play a Role in Gamete Fertility

Melissa R. van Dijk; Ben C. L. van Schaijk; Shahid M. Khan; Maaike W. van Dooren; Jai Ramesar; Szymon Kaczanowski; Geert-Jan van Gemert; Hans Kroeze; Hendrik G. Stunnenberg; Wijnand Eling; Robert W. Sauerwein; Andrew P. Waters; Chris J. Janse

The process of fertilization is critically dependent on the mutual recognition of gametes and in Plasmodium, the male gamete surface protein P48/45 is vital to this process. This protein belongs to a family of 10 structurally related proteins, the so called 6-cys family. To identify the role of additional members of this family in Plasmodium fertilisation, we performed genetic and functional analysis on the five members of the 6-cys family that are transcribed during the gametocyte stage of P. berghei. This analysis revealed that in addition to P48/45, two members (P230 and P47) also play an essential role in the process of parasite fertilization. Mating studies between parasites lacking P230, P48/45 or P47 demonstrate that P230, like P48/45, is a male fertility factor, consistent with the previous demonstration of a protein complex containing both P48/45 and P230. In contrast, disruption of P47 results in a strong reduction of female fertility, while males remain unaffected. Further analysis revealed that gametes of mutants lacking expression of p48/45 or p230 or p47 are unable to either recognise or attach to each other. Disruption of the paralog of p230, p230p, also specifically expressed in gametocytes, had no observable effect on fertilization. These results indicate that the P. berghei 6-cys family contains a number of proteins that are either male or female specific ligands that play an important role in gamete recognition and/or attachment. The implications of low levels of fertilisation that exist even in the absence of these proteins, indicating alternative pathways of fertilisation, as well as positive selection acting on these proteins, are discussed in the context of targeting these proteins as transmission blocking vaccine candidates.


Journal of Experimental Medicine | 2012

Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo

Jannik Fonager; Erica M. Pasini; Joanna A. M. Braks; Onny Klop; Jai Ramesar; Edmond J. Remarque; Irene O.C.M. Vroegrijk; Sjoerd G. van Duinen; Alan W. Thomas; Shahid M. Khan; Matthias Mann; Clemens H. M. Kocken; Chris J. Janse; Blandine Franke-Fayard

P. berghei ANKA parasites deficient in schizont membrane-associated cytoadherence protein reveal a beneficial role for CD36-mediated tissue sequestration in aiding parasite growth.


PLOS ONE | 2011

A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

Jing-wen Lin; Takeshi Annoura; Mohammed Sajid; Séverine Chevalley-Maurel; Jai Ramesar; Onny Klop; Blandine Franke-Fayard; Chris J. Janse; Shahid M. Khan

Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research.


International Journal for Parasitology | 2008

Simple and sensitive antimalarial drug screening in vitro and in vivo using transgenic luciferase expressing Plasmodium berghei parasites

Blandine Franke-Fayard; D. Djokovic; Maaike W. van Dooren; Jai Ramesar; Andrew P. Waters; M.O. Falade; Michel Kranendonk; Axel Martinelli; Pedro Cravo; Chris J. Janse

We report two improved assays for in vitro and in vivo screening of chemicals with potential anti-malarial activity against the blood stages of the rodent malaria parasite Plasmodiumberghei. These assays are based on the determination of luciferase activity (luminescence) in small blood samples containing transgenic blood stage parasites that express luciferase under the control of a promoter that is either schizont-specific (ama-1) or constitutive (eef1alphaa). Assay 1, the in vitro drug luminescence (ITDL) assay, measured the success of schizont maturation in the presence of candidate drugs quantifying luciferase activity in mature schizonts only (ama-1 promoter). The ITDL assay generated drug-inhibition curves and EC(50) values comparable to those obtained with standard in vitro drug-susceptibility assays. The second assay, the in vivo drug-luminescence (IVDL) assay, measured parasite growth in vivo in a standard 4-day suppressive drug test, monitored by measuring the constitutive luciferase activity of circulating parasites (eef1alphaa promoter). The IVDL assay generates growth-curves that are identical to those obtained by manual counting of parasites in Giemsa-stained smears. The reading of luminescence assays is rapid, requires a minimal number of handling steps and no experience with parasite morphology or handling fluorescence-activated cell sorters, produces no radioactive waste and test-plates can be stored for prolonged periods before processing. Both tests are suitable for use in larger-scale in vitro and in vivo screening of drugs. The standard methodology of anti-malarial drug screening and validation, which includes testing in rodent models of malaria, can be improved by the incorporation of such assays.


Molecular and Biochemical Parasitology | 1998

Malaria parasites contain two identical copies of an elongation factor 1 alpha gene

Rinke Vinkenoog; Márcia Aparecida Sperança; Onno van Breemen; Jai Ramesar; Donald H. Williamson; Petra B Ross-MacDonald; Alan W. Thomas; Chris J. Janse; Hernando A. del Portillo; Andrew P. Waters

Elongation factor 1alpha (EF-1alpha) is an abundant protein in eukaryotic cells, involved chiefly in translation of mRNA on the ribosomes, and is frequently encoded by more than one gene. Here we show the presence of two identical copies of the EF-1alpha gene in the genome of three malaria parasites, Plasmodium knowlesi, P. berghei and P. falciparum. They are organized in a head-to-head orientation and both genes are expressed in a stage specific manner at a high level, indicating that the small intergenic region contains either two strong promoters or a single bidirectional one. Both genes are expressed at the same time during erythrocytic development of the parasite. This expression pattern and the 100% similarity of the two genes excludes the possibility that the duplicated genes developed in accordance to the different types of ribosomes in Plasmodium. It is more likely that the duplication reflects a gene dosage effect. Comparison of codon usage in the Cdc2-related kinase genes (CRK2) of Plasmodium, which are expressed at a very low level, with the EF-1alpha genes indicates the existence of a codon bias for highly expressed genes, as has been shown in other organisms.

Collaboration


Dive into the Jai Ramesar's collaboration.

Top Co-Authors

Avatar

Chris J. Janse

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blandine Franke-Fayard

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shahid M. Khan

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Séverine Chevalley-Maurel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Annoura

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge