Jaideep Banerjee
The Ohio State University Wexner Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaideep Banerjee.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Sabyasachi Biswas; Sashwati Roy; Jaideep Banerjee; Syed-Rehan A. Hussain; Savita Khanna; Guruguhan Meenakshisundaram; Periannan Kuppusamy; Avner Friedman; Chandan K. Sen
Ischemia complicates wound closure. Here, we are unique in presenting a murine ischemic wound model that is based on bipedicle flap approach. Using this model of ischemic wounds we have sought to elucidate how microRNAs may be implicated in limiting wound re-epithelialization under hypoxia, a major component of ischemia. Ischemia, evaluated by laser Doppler as well as hyperspectral imaging, limited blood flow and lowered tissue oxygen saturation. EPR oximetry demonstrated that the ischemic wound tissue had pO2 <10 mm Hg. Ischemic wounds suffered from compromised macrophage recruitment and delayed wound epithelialization. Specifically, epithelial proliferation, as determined by Ki67 staining, was compromised. In vivo imaging showed massive hypoxia inducible factor-1α (HIF-1α) stabilization in ischemic wounds, where HIF-1α induced miR-210 expression that, in turn, silenced its target E2F3, which was markedly down-regulated in the wound-edge tissue of ischemic wounds. E2F3 was recognized as a key facilitator of cell proliferation. In keratinocytes, knock-down of E2F3 limited cell proliferation. Forced stabilization of HIF-1α using Ad-VP16- HIF-1α under normoxic conditions up-regulated miR-210 expression, down-regulated E2F3, and limited cell proliferation. Studies using cellular delivery of miR-210 antagomir and mimic demonstrated a key role of miR-210 in limiting keratinocyte proliferation. In summary, these results are unique in presenting evidence demonstrating that the hypoxia component of ischemia may limit wound re-epithelialization by stabilizing HIF-1α, which induces miR-210 expression, resulting in the down-regulation of the cell-cycle regulatory protein E2F3.
Journal of Cerebral Blood Flow and Metabolism | 2013
Savita Khanna; Cameron Rink; Reza Ghoorkhanian; Surya Gnyawali; Mallory Heigel; Dayanjan S. Wijesinghe; Charles E. Chalfant; Yuk Cheung Chan; Jaideep Banerjee; Yue Huang; Sashwati Roy; Chandan K. Sen
Glutathione depletion and 12-lipoxygenase-dependent metabolism of arachidonic acid are known to be implicated in neurodegeneration associated with acute ischemic stroke. The objective of this study was to investigate the significance of miR-29 in neurodegeneration associated with acute ischemic stroke. Neural cell death caused by arachidonic acid insult of glutathione-deficient cells was preceded by a 12-lipoxygenase-dependent loss of miR-29b. Delivery of miR-29b mimic to blunt such loss was neuroprotective. miR-29b inhibition potentiated such neural cell death. 12-Lipoxygenase knockdown and inhibitors attenuated the loss of miR-29b in challenged cells. In vivo, stroke caused by middle-cerebral artery occlusion was followed by higher 12-lipoxygenase activity and loss of miR-29b as detected in laser-captured infarct site tissue. 12-Lipoxygenase knockout mice demonstrated protection against such miR loss. miR-29b gene delivery markedly attenuated stroke-induced brain lesion. Oral supplementation of α-tocotrienol, a vitamin E 12-lipoxygenase inhibitor, rescued stroke-induced loss of miR-29b and minimized lesion size. This work provides the first evidence demonstrating that loss of miR-29b at the infarct site is a key contributor to stroke lesion. Such loss is contributed by activity of the 12-lipoxygenase pathway providing maiden evidence linking arachidonic acid metabolism to miR-dependent mechanisms in stroke.
PLOS ONE | 2014
Jaideep Banerjee; Piya Das Ghatak; Sashwati Roy; Savita Khanna; Emily Sequin; Karen Bellman; Bryan C. Dickinson; Prerna Suri; Vish V. Subramaniam; Christopher J. Chang; Chandan K. Sen
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.
Antioxidants & Redox Signaling | 2011
Jakub Rohlena; Lan-Feng Dong; Katarina Kluckova; Renata Zobalova; Jacob Goodwin; David Patrice Tilly; Jan Stursa; Alena Pecinova; Anatoly Philimonenko; Pavel Hozák; Jaideep Banerjee; Miroslav Ledvina; Chandan K. Sen; Josef Houstek; Mark J. Coster; Jiri Neuzil
AIMS A plausible strategy to reduce tumor progress is the inhibition of angiogenesis. Therefore, agents that efficiently suppress angiogenesis can be used for tumor suppression. We tested the antiangiogenic potential of a mitochondrially targeted analog of α-tocopheryl succinate (MitoVES), a compound with high propensity to induce apoptosis. RESULTS MitoVES was found to efficiently kill proliferating endothelial cells (ECs) but not contact-arrested ECs or ECs deficient in mitochondrial DNA, and suppressed angiogenesis in vitro by inducing accumulation of reactive oxygen species and induction of apoptosis in proliferating/angiogenic ECs. Resistance of arrested ECs was ascribed, at least in part, to the lower mitochondrial inner transmembrane potential compared with the proliferating ECs, thus resulting in the lower level of mitochondrial uptake of MitoVES. Shorter-chain homologs of MitoVES were less efficient in angiogenesis inhibition, thus suggesting a molecular mechanism of its activity. Finally, MitoVES was found to suppress HER2-positive breast carcinomas in a transgenic mouse as well as inhibit tumor angiogenesis. The antiangiogenic efficacy of MitoVES was corroborated by its inhibitory activity on wound healing in vivo. INNOVATION AND CONCLUSION We conclude that MitoVES, a mitochondrially targeted analog of α-tocopheryl succinate, is an efficient antiangiogenic agent of potential clinical relevance, exerting considerably higher activity than its untargeted counterpart. MitoVES may be helpful against cancer but may compromise wound healing.
Molecular Therapy | 2015
Subhadip Ghatak; Yuk Cheung Chan; Savita Khanna; Jaideep Banerjee; Jessica Weist; Sashwati Roy; Chandan K. Sen
Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21(Waf1/Cip1) expression. Adenoviral and pharmacological suppression of p21(Waf1/Cip1) in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21(Waf1/Cip1). This work upholds p21(Waf1/Cip1) as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult.
Methods of Molecular Biology | 2013
Jaideep Banerjee; Chandan K. Sen
MicroRNAs (miRNAs) are small noncoding RNA molecules ∼22 nucleotides in length that can post-transcriptionally repress gene expression. MiRNAs bind to their target messenger RNAs (mRNAs), leading to mRNA degradation or suppression of translation. miRNAs have recently been shown to play pivotal roles in skin development and are linked to various skin pathologies, cancer, and wound healing. Chronic wounds represent a major health burden and drain on resources and developing more effective treatments is therefore a necessity. Increase in the understanding of the regulation of chronic wound biology is therefore required to develop newer therapies. This review focuses on the role of miRNAs in cutaneous biology, the various methods of miRNA modulation, and the therapeutic opportunities in treatment of skin diseases and wound healing.
PLOS ONE | 2015
Jaideep Banerjee; Piya Das Ghatak; Sashwati Roy; Savita Khanna; Craig Hemann; Binbin Deng; Amitava Das; Jay L. Zweier; Daniel J. Wozniak; Chandan K. Sen
Pseudomonas aeruginosa biofilm is commonly associated with chronic wound infection. A FDA approved wireless electroceutical dressing (WED), which in the presence of conductive wound exudate gets activated to generate electric field (0.3–0.9V), was investigated for its anti-biofilm properties. Growth of pathogenic P. aeruginosa strain PAO1 in LB media was markedly arrested in the presence of the WED. Scanning electron microscopy demonstrated that WED markedly disrupted biofilm integrity in a setting where silver dressing was ineffective. Biofilm thickness and number of live bacterial cells were decreased in the presence of WED. Quorum sensing genes lasR and rhlR and activity of electric field sensitive enzyme, glycerol-3-phosphate dehydrogenase was also repressed by WED. This work provides first electron paramagnetic resonance spectroscopy evidence demonstrating that WED serves as a spontaneous source of reactive oxygen species. Redox-sensitive multidrug efflux systems mexAB and mexEF were repressed by WED. Taken together, these observations provide first evidence supporting the anti-biofilm properties of WED.
Advances in Experimental Medicine and Biology | 2015
Jaideep Banerjee; Chandan K. Sen
microRNAs (miRNAs) are small noncoding RNA molecules which play pivotal roles in wound healing. The increased expression of certain genes and expression of some others represent a key component of the wound biology and are largely under the regulation of naturally occurring miRNAs. Understanding the dysregulated miRNAs in chronic wound biology will therefore enable the development of newer therapies. This chapter focuses on the miRNAs that can be potentially targeted for improving skin wound healing and the challenges in miRNA therapy, including considerations in miRNA target identification and delivery.
MicroRNA in Regenerative Medicine | 2015
Jaideep Banerjee; Chandan K. Sen
Abstract Chronic wounds are a major health burden and a drain on resources. Thus, a greater understanding of the regulation of chronic wound biology is needed, involving skin physiology, the healing cascade, and genetic regulators. Wound healing is under epigenetic control, and it was recently discovered that hypoxia regulates a number of small gene regulators known as, or miRNAs, or miRNAs, that can repress gene expression and regulate at least a third of all coding genes. Also, because of recent advances in the delivery of miRNAs and antimiRs in vivo , manipulating them to regulate their target proteins has emerged as an exciting therapeutic opportunity.
Oxidative Medicine and Cellular Longevity | 2017
Jaideep Banerjee; Savita Khanna; Akash Bhattacharya
MicroRNAs (miRNAs) as a biomarker of pathology and regulators of gene expression have been well established through numerous publications over the last 10 years. Oxidative stress-related tissue damage is an important component of many diseases, and more and more studies are focused on discovering the signature of the regulatory interactions between redox signaling and specific miRNAs attributing to the disease. Reactive oxygen species has two faces—the good ROS and the bad ROS. Sustained high levels of ROS can cause intracellular damage while oxidants are also important intracellular signaling molecules, and multiple studies over the last two decades have implicated redox-dependent signaling as essential to a host of cellular decisions including differentiation, growth, cell death, and senescence. This makes it all the more important for a well-regulated cellular ROS level, and miRNAs fill in the role of maintaining this homeostasis. A dysregulation of normal physiological miRNA levels can thus lead to oxidative damage and development of disease. This special issue on microRNA regulation of oxidative stress encompasses cutting edge articles that focus on the role of microRNAs in regulating redox biology in several pathological conditions.