Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaikumar Duraiswamy is active.

Publication


Featured researches published by Jaikumar Duraiswamy.


Nature | 2006

PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression

Cheryl L. Day; Daniel E. Kaufmann; Photini Kiepiela; Julia Brown; Eshia Moodley; Sharon Reddy; Elizabeth W. Mackey; Joseph D. Miller; Alasdair Leslie; Chantal DePierres; Zenele Mncube; Jaikumar Duraiswamy; Baogong Zhu; Quentin Eichbaum; Marcus Altfeld; E. John Wherry; Hoosen Coovadia; Philip J. R. Goulder; Paul Klenerman; Rafi Ahmed; Gordon J. Freeman; Bruce D. Walker

Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. The inhibitory receptor programmed death 1 (PD-1; also known as PDCD1), a negative regulator of activated T cells, is markedly upregulated on the surface of exhausted virus-specific CD8 T cells in mice. Blockade of this pathway using antibodies against the PD ligand 1 (PD-L1, also known as CD274) restores CD8 T-cell function and reduces viral load. To investigate the role of PD-1 in a chronic human viral infection, we examined PD-1 expression on human immunodeficiency virus (HIV)-specific CD8 T cells in 71 clade-C-infected people who were naive to anti-HIV treatments, using ten major histocompatibility complex (MHC) class I tetramers specific for frequently targeted epitopes. Here we report that PD-1 is significantly upregulated on these cells, and expression correlates with impaired HIV-specific CD8 T-cell function as well as predictors of disease progression: positively with plasma viral load and inversely with CD4 T-cell count. PD-1 expression on CD4 T cells likewise showed a positive correlation with viral load and an inverse correlation with CD4 T-cell count, and blockade of the pathway augmented HIV-specific CD4 and CD8 T-cell function. These data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function. Moreover, this pathway of reversible T-cell impairment provides a potential target for enhancing the function of exhausted T cells in chronic HIV infection.


Cancer Research | 2013

Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors

Jaikumar Duraiswamy; Karen M. Kaluza; Gordon J. Freeman; George Coukos

Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression.


Journal of Experimental Medicine | 2010

Dynamic T cell migration program provides resident memory within intestinal epithelium

David Masopust; Daniel Choo; Vaiva Vezys; E. John Wherry; Jaikumar Duraiswamy; Rama Akondy; Jun Wang; Kerry A. Casey; Daniel L. Barber; Kim S. Kawamura; Kathryn A. Fraser; Richard J. Webby; Volker Brinkmann; Eugene C. Butcher; Kenneth A. Newell; Rafi Ahmed

Migration to intestinal mucosa putatively depends on local activation because gastrointestinal lymphoid tissue induces expression of intestinal homing molecules, whereas skin-draining lymph nodes do not. This paradigm is difficult to reconcile with reports of intestinal T cell responses after alternative routes of immunization. We reconcile this discrepancy by demonstrating that activation within spleen results in intermediate induction of homing potential to the intestinal mucosa. We further demonstrate that memory T cells within small intestine epithelium do not routinely recirculate with memory T cells in other tissues, and we provide evidence that homing is similarly dynamic in humans after subcutaneous live yellow fever vaccine immunization. These data explain why systemic immunization routes induce local cell-mediated immunity within the intestine and indicate that this tissue must be seeded with memory T cell precursors shortly after activation.


Cancer Research | 2013

Therapeutic PD-1 Pathway Blockade Augments with Other Modalities of Immunotherapy T-Cell Function to Prevent Immune Decline in Ovarian Cancer

Jaikumar Duraiswamy; Gordon J. Freeman; George Coukos

The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.


Journal of Immunology | 2011

Phenotype, Function, and Gene Expression Profiles of Programmed Death-1hi CD8 T Cells in Healthy Human Adults

Jaikumar Duraiswamy; Chris Ibegbu; David Masopust; Joseph D. Miller; Koichi Araki; Gregory H. Doho; Pramila Tata; Satish Gupta; Michael J. Zilliox; Helder I. Nakaya; Bali Pulendran; W. Nicholas Haining; Gordon J. Freeman; Rafi Ahmed

T cell dysfunction is an important feature of many chronic viral infections. In particular, it was shown that programmed death-1 (PD-1) regulates T cell dysfunction during chronic lymphocytic choriomeningitis virus infection in mice, and PD-1hi cells exhibit an intense exhausted gene signature. These findings were extended to human chronic infections such as HIV, hepatitis C virus, and hepatitis B virus. However, it is not known if PD-1hi cells of healthy humans have the traits of exhausted cells. In this study, we provide a comprehensive description of phenotype, function, and gene expression profiles of PD-1hi versus PD-1lo CD8 T cells in the peripheral blood of healthy human adults as follows: 1) the percentage of naive and memory CD8 T cells varied widely in the peripheral blood cells of healthy humans, and PD-1 was expressed by the memory CD8 T cells; 2) PD-1hi CD8 T cells in healthy humans did not significantly correlate with the PD-1hi exhausted gene signature of HIV-specific human CD8 T cells or chronic lymphocytic choriomeningitis virus-specific CD8 T cells from mice; 3) PD-1 expression did not directly affect the ability of CD8 T cells to secrete cytokines in healthy adults; 4) PD-1 was expressed by the effector memory compared with terminally differentiated effector CD8 T cells; and 5) finally, an interesting inverse relationship between CD45RA and PD-1 expression was observed. In conclusion, our study shows that most PD-1hi CD8 T cells in healthy adult humans are effector memory cells rather than exhausted cells.


Cancer and Metastasis Reviews | 2011

Tumor immune surveillance and ovarian cancer: lessons on immune mediated tumor rejection or tolerance.

Lana E. Kandalaft; Gregory T. Motz; Jaikumar Duraiswamy; George Coukos

In the past few years, cancer immunotherapies have produced promising results. Although traditionally considered unresponsive to immune therapy, increasing evidence indicates that ovarian cancers are, in fact, immunogenic tumors. This evidence comes from diverse epidemiologic and clinical data comprising evidence of spontaneous antitumor immune response and its association with longer survival in a proportion of ovarian cancer patients; evidence of tumor immune evasion mechanisms and their association with short survival in some ovarian cancer patients; and finally pilot data supporting the efficacy of immune therapy. Below we will discuss lessons learned on the biology underlying ovarian cancer immune rejection or tolerance and we will discuss its association with clinical outcome. We will discuss the role of angiogenesis and the tumor endothelium on regulation of the antitumor immune response with a special emphasis on the role of vascular endothelial growth factor (VEGF) in the suppression of immunological processes, which control tumor progression and its unique crosstalk with endothelin systems, and how their interactions may shape the antitumor immune response. In addition, we will discuss mechanisms of tumor tolerance through the suppression or exhaustion of effector cells and how these could be countered in the clinic. We believe that understanding these pathways in the tumor microenvironment will lead to novel strategies for enhancing ovarian cancer immunotherapy.


OncoImmunology | 2013

Replenish the source within: Rescuing tumor-infiltrating lymphocytes by double checkpoint blockade.

Jaikumar Duraiswamy; Gordon J. Freeman; George Coukos

We have recently reported that the PD-1 and CTLA4 signaling pathways are active in both effector and regulatory T cells, causing profound immune dysfunctions in the tumor microenvironment. In line with this notion, the dual blockade of PD-1- and CTLA4-conveyed signals may exert robust therapeutic effects. Here, we discuss the mechanisms possibly underlying such a synergic interaction.


Immunity | 2011

Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells.

Benjamin Alan Youngblood; Kenneth J. Oestreich; Sang Jun Ha; Jaikumar Duraiswamy; Rama Akondy; Erin E. West; Zhengyu Wei; Peiyuan Lu; James W. Austin; James L. Riley; Jeremy M. Boss; Rafi Ahmed


Journal of Immunology | 2007

PD-1 expression on memory CD8 and CD4 T-cell subsets in healthy humans

Jaikumar Duraiswamy; Joseph D. Miller; David Masopust; Chris Ibegbu; Hong Wu; Gordon J. Freeman; Rafi Ahmed


Journal of Immunology | 2012

Modulation of immunostimulatory and inhibitory signals augments T cell function by distinct mechanisms in the ovarian cancer microenvironment

Jaikumar Duraiswamy; Gordon J. Freeman; George Coukos

Collaboration


Dive into the Jaikumar Duraiswamy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge