Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaime A. Rivera-Pérez is active.

Publication


Featured researches published by Jaime A. Rivera-Pérez.


Molecular and Cellular Biology | 1991

The length of homology required for gene targeting in embryonic stem cells.

Paul Hasty; Jaime A. Rivera-Pérez; Allan Bradley

Homologous recombination has been used to introduce site-specific mutations into murine embryonic stem (ES) cells with both insertion and replacement vectors. In this study, we compared the frequency of gene targeting with various lengths of homology and found a dramatic increase in targeting with an increase in homology from 1.3 to 6.8 kb. We examined in detail the relationship between the length of homology and the gene-targeting frequency for replacement vectors and found that a critical length of homology is needed for targeting. Adding greater lengths of homology to this critical length has less of an effect on the targeting frequency. We also analyzed the lengths of homology necessary on both arms of the vector for gene replacement events and found that 472 bp of homology is used as efficiently as 1.2 kb in the formation and resolution of crossover junctions.


Analytical Biochemistry | 1992

Genomic DNA microextraction: A method to screen numerous samples☆

Ramiro Ramirez-Solis; Jaime A. Rivera-Pérez; James D. Wallace; Marie Wims; Hui Zheng; Allan Bradley

Many experimental designs require the analysis of genomic DNA from a large number of samples. Although the polymerase chain reaction (PCR) can be used, the Southern blot is preferred for many assays because of its inherent reliability. The rapid acceptance of PCR, despite a significant rate of false positive/negative results, is partly due to the disadvantages of the sample preparation process for Southern blot analysis. We have devised a rapid protocol to extract high-molecular-weight genomic DNA from a large number of samples. It involves the use of a single 96-well tissue culture dish to carry out all the steps of the sample preparation. This, coupled with the use of a multichannel pipette, facilitates the simultaneous analysis of multiple samples. The procedure may be automated since no centrifugation, mixing, or transferring of the samples is necessary. The method has been used to screen embryonic stem cell clones for the presence of targeted mutations at the Hox-2.6 locus and to obtain data from human blood.


Molecular and Cellular Biology | 1991

Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells.

Paul Hasty; Jaime A. Rivera-Pérez; Christine Chang; Allan Bradley

Gene targeting has been used to direct mutations into specific chromosomal loci in murine embryonic stem (ES) cells. The altered locus can be studied in vivo with chimeras and, if the mutated cells contribute to the germ line, in their offspring. Although homologous recombination is the basis for the widely used gene targeting techniques, to date, the mechanism of homologous recombination between a vector and the chromosomal target in mammalian cells is essentially unknown. Here we look at the nature of gene targeting in ES cells by comparing an insertion vector with replacement vectors that target hprt. We found that the insertion vector targeted up to ninefold more frequently than a replacement vector with the same length of homologous sequence. We also observed that the majority of clones targeted with replacement vectors did not recombine as predicted. Analysis of the recombinant structures showed that the external heterologous sequences were often incorporated into the target locus. This observation can be explained by either single reciprocal recombination (vector insertion) of a recircularized vector or double reciprocal recombination/gene conversion (gene replacement) of a vector concatemer. Thus, single reciprocal recombination of an insertion vector occurs 92-fold more frequently than double reciprocal recombination of a replacement vector with crossover junctions on both the long and short arms.


Developmental Biology | 2003

Dynamic morphogenetic events characterize the mouse visceral endoderm

Jaime A. Rivera-Pérez; Jesse Mager; Terry Magnuson

Several lines of evidence suggest that the extraembryonic endoderm of vertebrate embryos plays an important role in the development of rostral neural structures. In mice, neural inductive signals are thought to reside in an area of visceral endoderm that expresses the Hex gene. Here, we have conducted a morphological and lineage analysis of visceral endoderm cells spanning pre- and postprimitive streak stages. Our results show that Hex-expressing cells have a tall, columnar epithelial morphology, which distinguishes them from other visceral endoderm cells. This region of visceral endoderm thickening (VET) is found overlying first the distal and then one side of the epiblast at stages between 5.5 and 5.75 days post coitum (d.p.c.). In addition, we show that the epiblast has an anteroposterior-compressed appearance that is aligned with the position of the VET. Intracellular labeling of VET/Hex-expressing cells reveals an anterior and anterolateral shift from their distal epiblast position. VET/Hex-expressing cells are first localized to the anterior side of the epiblast by 5.75 d.p.c. and form a crescent on the anterior half of the embryo at the onset of gastrulation. Subsequently, VET descendants are distributed along the embryonic/extraembryonic boundary by headfold stages at 7.5 d.p.c. The morphological characteristics and position of VET/Hex-expressing cells distinguishes the future anteroposterior axis of the embryo and provide landmarks to stage mouse embryos at preprimitive streak stages. Moreover, the morphological characteristics of pregastrulation mouse embryos together with the stereotyped shift in the position of visceral endoderm cells reveal similarities among amniote embryos that suggest an evolutionary conservation of the mechanisms that pattern the rostral neurectoderm at pregastrula stages.


Molecular and Cellular Biology | 2009

Aurora-A Kinase Is Essential for Bipolar Spindle Formation and Early Development

Dale O. Cowley; Jaime A. Rivera-Pérez; Mark Schliekelman; Yizhou Joseph He; Trudy G. Oliver; Lucy Lu; Ryan O'Quinn; E. D. Salmon; Terry Magnuson; Terry Van Dyke

ABSTRACT Aurora-A is a conserved kinase implicated in mitotic regulation and carcinogenesis. Aurora-A was previously implicated in mitotic entry and spindle assembly, although contradictory results prevented a clear understanding of the roles of Aurora-A in mammals. We developed a conditional null mutation in the mouse Aurora-A gene to investigate Aurora-A functions in primary cells ex vivo and in vivo. We show here that conditional Aurora-A ablation in cultured embryonic fibroblasts causes impaired mitotic entry and mitotic arrest with a profound defect in bipolar spindle formation. Germ line Aurora-A deficiency causes embryonic death at the blastocyst stage with pronounced cell proliferation failure, mitotic arrest, and monopolar spindle formation. Aurora-A deletion in mid-gestation embryos causes an increase in mitotic and apoptotic cells. These results indicate that murine Aurora-A facilitates, but is not absolutely required for, mitotic entry in murine embryonic fibroblasts and is essential for centrosome separation and bipolar spindle formation in vitro and in vivo. Aurora-A deletion increases apoptosis, suggesting that molecular therapies targeting Aurora-A may be effective in inducing tumor cell apoptosis. Aurora-A conditional mutant mice provide a valuable system for further defining Aurora-A functions and for predicting effects of Aurora-A therapeutic intervention.


Molecular and Cellular Biology | 2005

Ablation of MEKK4 kinase activity causes neurulation and skeletal patterning defects in the mouse embryo

Amy N. Abell; Jaime A. Rivera-Pérez; Bruce D. Cuevas; Mark T. Uhlik; Susan Sather; Nancy Lassignal Johnson; Suzanne K. Minton; Jean M. Lauder; Ann M. Winter-Vann; Kazuhiro Nakamura; Terry Magnuson; Richard R. Vaillancourt; Lynn E. Heasley; Gary L. Johnson

ABSTRACT Skeletal disorders and neural tube closure defects represent clinically significant human malformations. The signaling networks regulating normal skeletal patterning and neurulation are largely unknown. Targeted mutation of the active site lysine of MEK kinase 4 (MEKK4) produces a kinase-inactive MEKK4 protein (MEKK4K1361R). Embryos homozygous for this mutation die at birth as a result of skeletal malformations and neural tube defects. Hindbrains of exencephalic MEKK4K1361R embryos show a striking increase in neuroepithelial cell apoptosis and a dramatic loss of phosphorylation of MKK3 and -6, mitogen-activated protein kinase kinases (MKKs) regulated by MEKK4 in the p38 pathway. Phosphorylation of MAPK-activated protein kinase 2, a p38 substrate, is also inhibited, demonstrating a loss of p38 activity in MEKK4K1361R embryos. In contrast, the MEK1/2-extracellular signal-regulated kinase 1 (ERK1)/ERK2 and MKK4-Jun N-terminal protein kinase pathways were unaffected. The p38 pathway has been shown to regulate the phosphorylation and expression of the small heat shock protein HSP27. Compared to the wild type, MEKK4K1361R fibroblasts showed significantly reduced phosphorylation of p38 and HSP27, with a corresponding heat shock-induced instability of the actin cytoskeleton. Together, these data demonstrate MEKK4 regulation of p38 and that substrates downstream of p38 control cellular homeostasis. The findings are the first demonstration that MEKK4-regulated p38 activity is critical for neurulation.


Molecular and Cellular Biology | 1992

The role and fate of DNA ends for homologous recombination in embryonic stem cells.

Paul Hasty; Jaime A. Rivera-Pérez; Allan Bradley

We have analyzed the gene-targeting frequencies and recombination products generated by a series of vectors which target the hprt locus in embryonic stem cells and found the existence of alternative pathways that depend on the location of the double-strand break within the vector. A double-strand break in the targeting homology was found to increase the targeting frequency compared with a double-strand break at the edge of or outside the target homology; this finding agrees with the double-strand break repair model proposed for Saccharomyces cerevisiae. Although a double-strand break in the homology is important for efficient targeting, observations reported here suggest that the terminal ends are not always directly involved in the initial recombination event. Short terminal heterologous sequences which block the homologous ends of the vector may be incorporated into the target locus. A modification of the double-strand break repair model is described to account for this observation.


Developmental Biology | 2013

Wnt3 function in the epiblast is required for the maintenance but not the initiation of gastrulation in mice.

Giovane G. Tortelote; J. Manuel Hernández-Hernández; Alexandre J. C. Quaresma; Jeffrey A. Nickerson; Anthony N. Imbalzano; Jaime A. Rivera-Pérez

The formation of the anteroposterior axis in mice requires a Wnt3-dependent symmetry-breaking event that leads to the formation of the primitive streak and gastrulation. Wnt3 is expressed sequentially in two distinct areas of the mouse embryo before the appearance of the primitive streak; first in the posterior visceral endoderm and soon after in the adjacent posterior epiblast. Hence, although an axial requirement for Wnt3 is well established, its temporal and tissue specific requirements remain an open question. Here, we report the conditional inactivation of Wnt3 in the epiblast of developing mouse embryos. Contrary to previous studies, our data shows that embryos lacking Wnt3 specifically in the epiblast are able to initiate gastrulation and advance to late primitive streak stages but fail to thrive and are resorbed by E9.5. At the molecular level, we provide evidence that Wnt3 regulates its own expression and that of other primitive streak markers via activation of the canonical Wnt signaling pathway.


Methods in Enzymology | 2010

CULTURE OF WHOLE MOUSE EMBRYOS AT EARLY POSTIMPLANTATION TO ORGANOGENESIS STAGES: DEVELOPMENTAL STAGING AND METHODS

Jaime A. Rivera-Pérez; Vanessa Jones; Patrick P.L. Tam

In vitro culture of whole mouse embryos enables the maintenance of growth and morphogenesis of postimplantation embryos outside the uterine environment. This technological advent facilitates the observation of the development of embryos in real time whereby cell lineage and tissue morphogenesis can be traced with appropriate vital cell labels and molecular markers. Embryos in culture are also amenable to direct experimental manipulations for elucidating developmental mechanisms of embryogenesis, germ layer formation, and embryonic patterning. This chapter outlines protocols for culturing mouse embryos at the immediate postimplantation period. We also present a system of developmental staging so that the outcome of different embryo culture studies may be assessed properly with reference to the precise developmental stage of the embryos used for the specific experiments.


Development | 2012

A fast and sensitive alternative for β-galactosidase detection in mouse embryos

Sakthi Sundararajan; Maki Wakamiya; Richard R. Behringer; Jaime A. Rivera-Pérez

The bacterial lacZ gene is widely used as a reporter in a myriad of mouse transgenic experiments. β-Galactosidase, encoded by lacZ, is usually detected using X-gal in combination with ferric and ferrous ions. This assay produces a blue indole precipitate that is easy to detect visually. Here, we show that Salmon-gal in combination with tetrazolium salts provides a more sensitive and faster staining reaction than the traditional β-galactosidase assay in mouse embryos. Using a combination of Salmon-gal and tetranitroblue tetrazolium, we were able to visualize the activity of β-galactosidase in embryos at stages when the customary X-gal reaction failed to detect staining. Our studies provide an enhanced alternative for β-galactosidase detection in expression and cell fate studies that use lacZ-based transgenic mouse lines.

Collaboration


Dive into the Jaime A. Rivera-Pérez's collaboration.

Top Co-Authors

Avatar

Richard R. Behringer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Maki Wakamiya

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Stephen N. Jones

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Yeonsoo Yoon

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Allan Bradley

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Paul Hasty

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Terry Magnuson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge