Jaime Berumen
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaime Berumen.
Archives of Medical Research | 2009
Marcela Lizano; Jaime Berumen; Alejandro García-Carrancá
Human papillomavirus (HPV) constitutes a diverse group of small DNA virus, some extensively studied during the last three decades due to their carcinogenic potential. Persistence of viral infections and uncontrolled expression of E6 and E7 viral oncogenes are critical events in transformation. A surprisingly large number of different HPV types have been identified and classified (>100) and it has been anticipated that almost 200 may exist. HPV types are thought to have originated very early during human evolution and are now defined by their L1 genomic sequence, differing by >10% among them. Importantly, viral types are cell-type specific and usually produce different kinds of lesions, benign or malignant. In addition, these types have co-evolved with their hosts and have generated what we call now intratype variants. Variants of HPV types are found associated with the ethnicity of the populations and have been grouped geographically. It is believed that HPV intratype variants may differ in biological behavior. Recognition of the crucial role that some specific HPV types play in cervical cancer development is highly important for their prevention and implementation of public health strategies to control cervical cancer, still the leading cause of death among cancer patients in many developing nations. Here we review basic concepts of HPV-induced carcinogenesis and molecular differences found among HPV types and intratype variants and discuss their clinical and functional implications.
International Journal of Cancer | 2012
Everardo Hernandez-Plata; Cindy Sharon Ortiz; Brenda Marquina-Castillo; Ingrid Medina-Martinez; Ana Alfaro; Jaime Berumen; Manuel Rivera; Juan Carlos Gomora
Functional activity of voltage‐gated sodium channels (VGSC) has been associated to the invasion and metastasis behaviors of prostate, breast and some other types of cancer. We previously reported the functional expression of VGSC in primary cultures and biopsies derived from cervical cancer (CaC). Here, we investigate the relative expression levels of VGSC subunits and its possible role in CaC. Quantitative real‐time PCR revealed that mRNA levels of NaV1.6 α‐subunit in CaC samples were ∼40‐fold higher than in noncancerous cervical (NCC) biopsies. A NaV1.7 α‐subunit variant also showed increased mRNA levels in CaC (∼20‐fold). All four NaVβ subunits were also detected in CaC samples, being NaVβ1 the most abundant. Proteins of NaV1.6 and NaV1.7 α‐subunits were immunolocalized in both NCC and CaC biopsies and in CaC primary cultures as well; however, although in NCC sections proteins were mainly relegated to the plasma membrane, in CaC biopsies and primary cultures the respective signal was stronger and widely distributed in both cytoplasm and plasma membrane. Functional activity of NaV1.6 channels in the plasma membrane of CaC cells was confirmed by whole‐cell patch‐clamp experiments using Cn2, a NaV1.6‐specific toxin, which blocked ∼30% of the total sodium current. Blocking of sodium channels VGSC with tetrodotoxin and Cn2 did not affect proliferation neither migration, but reduced by ∼20% the invasiveness of CaC primary culture cells in vitro assays. We conclude that NaV1.6 is upregulated in CaC and could serve as a novel molecular marker for the metastatic behavior of this carcinoma.
PLOS ONE | 2012
Oscar Vazquez-Mena; Ingrid Medina-Martinez; Eligia Juárez-Torres; Valeria Barrón; Ana Espinosa; Nicolás Villegas-Sepúlveda; Laura Gómez-Laguna; Karem Nieto-Martínez; Lorena Orozco; Edgar Roman-Basaure; Sergio Muñoz Cortez; Manuel Borges Ibañez; Carlos Venegas-Vega; Mariano Guardado-Estrada; Angélica Rangel-López; Susana Kofman; Jaime Berumen
Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearmans correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.
PLOS ONE | 2013
Ana María Espinosa; Ana Alfaro; Edgar Roman-Basaure; Mariano Guardado-Estrada; Icela Palma; Cyntia Serralde; Ingrid Medina; Eligia Juárez; Miriam Bermúdez; Edna Márquez; Manuel Borges-Ibáñez; Sergio Muñoz-Cortez; Avissai Alcántara-Vázquez; Patricia Alonso; José Curiel-Valdez; Susana Kofman; Nicolás Villegas; Jaime Berumen
The effect of preventive human papillomavirus (HPV) vaccination on the reduction of the cervical cancer (CC) burden will not be known for 30 years. Therefore, it’s still necessary to improve the procedures for CC screening and treatment. The objective of this study was to identify and characterize cellular targets that could be considered potential markers for screening or therapeutic targets. A pyramidal strategy was used. Initially the expression of 8,638 genes was compared between 43 HPV16-positive CCs and 12 healthy cervical epitheliums using microarrays. A total of 997 genes were deregulated, and 21 genes that showed the greatest deregulation were validated using qRT-PCR. The 6 most upregulated genes (CCNB2, CDC20, PRC1, SYCP2, NUSAP1, CDKN3) belong to the mitosis pathway. They were further explored in 29 low-grade cervical intraepithelial neoplasias (CIN1) and 21 high-grade CIN (CIN2/3) to investigate whether they could differentiate CC and CIN2/3 (CIN2+) from CIN1 and controls. CCNB2, PRC1, and SYCP2 were mostly associated with CC and CDC20, NUSAP1, and CDKN3 were also associated with CIN2/3. The sensitivity and specificity of CDKN3 and NUSAP1 to detect CIN2+ was approximately 90%. The proteins encoded by all 6 genes were shown upregulated in CC by immunohistochemistry. The association of these markers with survival was investigated in 42 CC patients followed up for at least 42 months. Only CDKN3 was associated with poor survival and it was independent from clinical stage (HR = 5.9, 95%CI = 1.4–23.8, p = 0.01). CDKN3 and NUSAP1 may be potential targets for the development of screening methods. Nevertheless, further studies with larger samples are needed to define the optimal sensitivity and specificity. Inhibition of mitosis is a well-known strategy to combat cancers. Therefore, CDKN3 may be not only a screening and survival marker but a potential therapeutic target in CC. However, whether it’s indispensable for tumor growth remains to be demonstrated.
Clinical Cancer Research | 2015
Hong Lou; Guillermo Villagran; Joseph F. Boland; Kate M. Im; Sarita Polo; Weiyin Zhou; Ushie Odey; Eligia Juárez-Torres; Ingrid Medina-Martinez; Edgar Roman-Basaure; Jason Mitchell; David Roberson; Julie Sawitzke; Lisa Garland; Maria Rodriguez-Herrera; David Wells; Jennifer Troyer; Francisco Castillo Pinto; Sara Bass; Xijun Zhang; Miriam Castillo; Bert Gold; Hesler Morales; Meredith Yeager; Jaime Berumen; Enrique Alvirez; Eduardo Gharzouzi; Michael Dean
Purpose: Cervical cancer is one of the most common causes of cancer mortality for women living in poverty, causing more than 28,000 deaths annually in Latin America and 266,000 worldwide. To better understand the molecular basis of the disease, we ascertained blood and tumor samples from Guatemala and Venezuela and performed genomic characterization. Experimental Design: We performed human papillomavirus (HPV) typing and identified somatically mutated genes using exome and ultra-deep targeted sequencing with confirmation in samples from Mexico. Copy number changes were also assessed in the exome sequence. Results: Cervical cancer cases in Guatemala and Venezuela have an average age of diagnosis of 50 years and 5.6 children. Analysis of 675 tumors revealed activation of PIK3CA and other PI3K/AKT pathway genes in 31% of squamous carcinomas and 24% of adeno- and adenosquamous tumors, predominantly at two sites (E542K, E545K) in the helical domain of the PIK3CA gene. This distribution of PIK3CA mutations is distinct from most other cancer types and does not result in the in vitro phosphorylation of AKT. Somatic mutations were more frequent in squamous carcinomas diagnosed after the age of 50 years. Frequent gain of chromosome 3q was found, and low PIK3CA mutation fractions in many tumors suggest that PI3K mutation can be a late event in tumor progression. Conclusions: PI3K pathway mutation is important to cervical carcinogenesis in Latin America. Therapeutic agents that directly target PI3K could play a role in the therapy of this common malignancy. Clin Cancer Res; 21(23); 5360–70. ©2015 AACR.
Journal of Human Genetics | 2009
Mariano Guardado-Estrada; Eligia Juárez-Torres; Ingrid Medina-Martinez; Ana Wegier; Antonio Macías; Guillermo Gomez; Fernando Cruz-Talonia; Edgar Román-Bassaure; Daniel Piñero; Susana Kofman-Alfaro; Jaime Berumen
There are limited data on mitochondrial DNA (mtDNA) variation in the Mexican mestizo population. To examine the genetic diversity and matrilineal ancestry, the full mtDNA hypervariable regions I and II were sequenced in 270 unrelated mestizos from different regions of Mexico. A total of 202 different haplotypes were identified and the haplotype diversity was 0.9945. Amerindian haplotypes predominated in the sample with a proportion of 93.3%, followed by European (6.0%) and African haplotypes (0.7%). The frequency of the Amerindian haplogroups A2, B2, C1 and D1 was 51.1, 17.8, 18.5 and 5.9%, respectively. The frequency of Amerindian haplogroups was higher in the central region than in Mexico City, whereas it was the contrary for European haplogroups. This difference was accounted principally by the high frequency of B2 haplotypes in the central region. The minimum spanning network, the mismatch distribution and Tajimas D neutrality test suggest a population expansion for each Amerindian haplogroup, which could be initiated more recently for haplogroups A2 and D1. The present knowledge combined with other nuclear genetic markers will be essential in future association studies to correct for genetic substructure in mestizo populations.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2012
Magda Carvajal; Jaime Berumen; Mariano Guardado-Estrada
The carcinogenic biomarker aflatoxin B1-formamidopyrimidine 2,3-dihydro-2-(N-formyl)-2′,5′,6′-triamino-4′-4′-oxy-N-pyrimidyl-3-hydroxy-AFB1 called AFB1-FAPY adduct, and Human Papilloma Virus (HPV) types 16 and 18 were quantified from DNA cervical scrapes from 40 women with cervical cancer (CC) and 14 healthy women as controls. The relationship between the AFB1-FAPY adduct and HPV types 16 and 18 was determined. Competitive inhibitory indirect ELISA was validated with 94% inhibition to quantify the AFB1-FAPY adducts in picograms per milligram of DNA (limit of detection = 0.1 pg/mg, and limit of quantification = 10 pg/mg), polymerase chain reaction and DNA sequencing to identify HPV types. The average concentration of AFB1-FAPY adducts/mg DNA in the CC cases was 1025 pg, 1420 pg with HPV16 and 630 pg sharing HPV18 (p = 0.03). In comparison, healthy controls had ≤2.6 pg/mg DNA, a statistically significant difference (p = 0.00006). The presence of AFB1-FAPY adduct increased six-fold the risk for CC between cases and controls, the odds ratio was 6.1 (95% CI = 1.4–25.4). There was a close relationship between the AFB1-FAPY adducts and HPV16 in CC samples.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2012
Elia Martha Pérez-Armendáriz; Lourdes Cruz-Miguel; Cristina Coronel-Cruz; Marcelino Esparza-Aguilar; Enrique Pinzón-Estrada; Elizabeth Rancaño-Camacho; Gerardo Zacarias-Climaco; Paola Fernández Olivares; Ana María Espinosa; Ingeborg Becker; Juan C. Sáez; Jaime Berumen; Gregorio Pérez-Palacios
To identify when during fetal development connexins (Cxs) 26 (Cx26) 32 (Cx32), and 36 (Cx36) begin to be expressed, as well as to characterize their spatial distribution, real time polymerase chain reaction and immunolabeling studies were performed. Total RNA from mouse pancreases at 13 and 18 days postcoitum (dpc) and 3 days postpartum (dpp) was analyzed. In addition, pancreatic sections of mouse at 13, 14, 15, 16, 18 dpc and 3 dpp and of rat at term were double labeled with either anti‐insulin or anti‐α‐amylase and anti‐Cx26 or ‐Cx32 or ‐Cx36 antibodies and studied with confocal microscopy. From day 13 dpc, Cxs 26, 32, and 36 transcripts were identified and their levels increased with age. At 13–14 dpc, Cxs 26 and 32 were localized in few acinar cells, whereas Cx36 was distributed in small beta cell clumps. From day 14 dpc onwards, the number of labeled cells and relative immunofluorescent reactivity of all three Cxs at junctional membranes of the respective cell types increased. Cxs 26 and 32 colocalized in fetal acinar cells. In rat pancreas at term, a similar connexin distribution was found. Relative Cxs levels evaluated by immunoblotting also increased (two‐fold) in pancreas homogenates from day 18 dpc to 3 dpp. The early cell specific, wide distribution, and age dependent expression of Cxs 26, 32, and 36 during fetal pancreas ontogeny suggests their possible involvement in pancreas differentiation and prenatal maturation. Anat Rec, 2012.
Virus Research | 2012
Eduardo Lopez-Urrutia; Jesús Valdés; Raúl Bonilla-Moreno; Martha Martínez-Salazar; Martha Martínez-García; Jaime Berumen; Nicolás Villegas-Sepúlveda
The HPV-16 E6/E7 genes, which contain intron 1, are processed by alternative splicing and its transcripts are detected with a heterogeneous profile in tumours cells. Frequently, the HPV-16 positive carcinoma cells bear viral variants that contain single nucleotide polymorphisms into its DNA sequence. We were interested in analysing the contribution of this polymorphism to the heterogeneity in the pattern of the E6/E7 spliced transcripts. Using the E6/E7 sequences from three closely related HPV-16 variants, we have shown that a few nucleotide changes are sufficient to produce heterogeneity in the splicing profile. Furthermore, using mutants that contained a single SNP, we also showed that one nucleotide change was sufficient to reproduce the heterogeneous splicing profile. Additionally, a difference of two or three SNPs among these viral sequences was sufficient to recruit differentially several splicing factors to the polymorphic E6/E7 transcripts. Moreover, only one SNP was sufficient to alter the binding site of at least one splicing factor, changing the ability of splicing factors to bind the transcript. Finally, the factors that were differentially bound to the short form of intron 1 of one of these E6/E7 variants were identified as TIA1 and/or TIAR and U1-70k, while U2AF65, U5-52k and PTB were preferentially bound to the transcript of the other variants.
PLOS ONE | 2014
Ingrid Medina-Martinez; Valeria Barrón; Edgar Román-Bassaure; Eligia Juárez-Torres; Mariano Guardado-Estrada; Ana María Espinosa; Miriam Bermúdez; Fernando Fernández; Carlos Venegas-Vega; Lorena Orozco; Edgar Zenteno; Susana Kofman; Jaime Berumen
We investigated the role of tumor copy number (CN)–altered genome (CN-AG) in the carcinogenesis of cervical cancer (CC), especially its effect on gene expression, biological processes, and patient survival. Fifty-nine human papillomavirus 16 (HPV16)-positive CCs were investigated with microarrays–31 for mapping CN-AG and 55 for global gene expression, with 27 CCs in common. Five-year survival was investigated in 55 patients. Deletions and amplifications >2.5 Mb were defined as CN alterations. The %CN-AG varied from 0 to 32.2% (mean = 8.1±8.9). Tumors were classified as low (mean = 0.5±0.6, n = 11), medium (mean = 5.4±2.4, n = 10), or high (mean = 19.2±6.6, n = 10) CN. The highest %CN-AG was found in 3q, which contributed an average of 55% of all CN alterations. Genome-wide, only 5.3% of CN-altered genes were deregulated directly by gene dosage. In contrast, the rate in fully duplicated 3q was twice as high. Amplification of 3q explained 23.2% of deregulated genes in whole tumors (r2 = 0.232, p = 0.006; analysis of variance), including genes located in 3q and other chromosomes. A total of 862 genes were deregulated exclusively in high-CN tumors, but only 22.9% were CN altered. This suggests that the remaining genes are not deregulated directly by gene dosage, but by mechanisms induced in trans by CN-altered genes. Anaphase-promoting complex/cyclosome (APC/C)-dependent proteasome proteolysis, glycolysis, and apoptosis were upregulated, whereas cell adhesion and angiogenesis were downregulated exclusively in high-CN tumors. The high %CN-AG and upregulated gene expression profile of APC/C-dependent proteasome proteolysis were associated with poor patient survival (p<0.05, log-rank test). Along with glycolysis, they were linearly associated with FIGO stage (r>0.38, p<0.01, Spearman test). Therefore, inhibition of APC/C-dependent proteasome proteolysis and glycolysis could be useful for CC treatment. However, whether they are indispensable for tumor growth remains to be demonstrated.