Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaime E. Blair is active.

Publication


Featured researches published by Jaime E. Blair.


BMC Evolutionary Biology | 2004

A molecular timescale of eukaryote evolution and the rise of complex multicellular life

S. Blair Hedges; Jaime E. Blair; Maria L Venturi; Jason L Shoe

BackgroundThe pattern and timing of the rise in complex multicellular life during Earths history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time.ResultsOur phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10 types at 1500 Ma and 50 cell types at ~1000 Ma.ConclusionsThe results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 2–3 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity.


BMC Evolutionary Biology | 2002

The evolutionary position of nematodes

Jaime E. Blair; Kazuho Ikeo; Takashi Gojobori; S. Blair Hedges

BackgroundThe complete genomes of three animals have been sequenced by global research efforts: a nematode worm (Caenorhabditis elegans), an insect (Drosophila melanogaster), and a vertebrate (Homo sapiens). Remarkably, their relationships have yet to be clarified. The confusion concerns the enigmatic position of nematodes. Traditionally, nematodes have occupied a basal position, in part because they lack a true body cavity. However, the leading hypothesis now joins nematodes with arthropods in a molting clade, Ecdysozoa, based on data from several genes.ResultsWe tested the Ecdysozoa hypothesis with analyses of more than 100 nuclear protein alignments, under conditions that would expose biases, and found that it was not supported. Instead, we found significant support for the traditional hypothesis, Coelomata. Our result is robust to different rates of sequence change among genes and lineages, different numbers of taxa, and different species of nematodes.ConclusionWe conclude that insects (arthropods) are genetically and evolutionarily closer to humans than to nematode worms.


Fungal Diversity | 2014

One stop shop: backbones trees for important phytopathogenic genera: I (2014)

Kevin D. Hyde; R. Henrik Nilsson; S. Aisyah Alias; Hiran A. Ariyawansa; Jaime E. Blair; Lei Cai; Arthur W.A.M. de Cock; Asha J. Dissanayake; Sally L. Glockling; Ishani D. Goonasekara; Michał Gorczak; Matthias Hahn; Ruvishika S. Jayawardena; Jan A. L. van Kan; Matthew H. Laurence; C. André Lévesque; Xinghong Li; Jian-Kui Liu; Sajeewa S. N. Maharachchikumbura; Dimuthu S. Manamgoda; Frank N. Martin; Eric H. C. McKenzie; Alistair R. McTaggart; Peter E. Mortimer; Prakash V. R. Nair; Julia Pawłowska; Tara L. Rintoul; Roger G. Shivas; Christoffel F. J. Spies; Brett A. Summerell

Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.


Nucleic Acids Research | 2007

CFGP: a web-based, comparative fungal genomics platform

Jongsun Park; Bongsoo Park; Kyongyong Jung; Suwang Jang; Kwangyul Yu; Jae Young Choi; Sunghyung Kong; Jaejin Park; Seryun Kim; Hyojeong Kim; Soonok Kim; Jihyun F. Kim; Jaime E. Blair; Kwangwon Lee; Seogchan Kang; Yong-Hwan Lee

Since the completion of the Saccharomyces cerevisiae genome sequencing project in 1996, the genomes of over 80 fungal species have been sequenced or are currently being sequenced. Resulting data provide opportunities for studying and comparing fungal biology and evolution at the genome level. To support such studies, the Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr), a web-based multifunctional informatics workbench, was developed. The CFGP comprises three layers, including the basal layer, middleware and the user interface. The data warehouse in the basal layer contains standardized genome sequences of 65 fungal species. The middleware processes queries via six analysis tools, including BLAST, ClustalW, InterProScan, SignalP 3.0, PSORT II and a newly developed tool named BLASTMatrix. The BLASTMatrix permits the identification and visualization of genes homologous to a query across multiple species. The Data-driven User Interface (DUI) of the CFGP was built on a new concept of pre-collecting data and post-executing analysis instead of the ‘fill-in-the-form-and-press-SUBMIT’ user interfaces utilized by most bioinformatics sites. A tool termed Favorite, which supports the management of encapsulated sequence data and provides a personalized data repository to users, is another novel feature in the DUI.


Fungal Genetics and Biology | 2014

A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora.

Frank N. Martin; Jaime E. Blair; Michael D. Coffey

The most recent phylogenetic analysis of the genus Phytophthora was completed in 2008 (Blair et al., 2008) and utilized 8.1 kb of sequence data from seven nuclear loci. Given the large number of species that have recently been described, this study was undertaken to broaden the available information on the phylogeny of the genus. A total of 166 isolates representing 92 recognized species and 17 provisional species were analyzed, including many of the same isolates used in the nuclear multilocus study of Blair et al. (2008). Four mitochondrial genes (cox2, nad9, rps10 and secY) were sequenced with a total of 2373 bp used in the analysis; the species relationships recovered with mitochondrial data were largely consistent with those observed previously in the nuclear analysis. Combining the new mitochondrial data with the nuclear data from Blair et al. (2008) generated a dataset of 10,828 bp representing 11 loci, however resolution of basal clade relationships was still low. We therefore implemented a modified multispecies coalescent approach with a subset of the data, and recovered increased resolution and moderate to high support for clade relationships. A more detailed analysis of species from clades 2 and 8 identified an additional seven phylogenetic lineages that warrant further investigation to determine if they represent distinct species. As has been reported in other phylogenetic studies of the genus, there was no consistent correlation between phylogenetic relatedness and morphological features or ecology.


American Journal of Botany | 2004

Phylogenetic position and biogeography of Hillebrandia sandwicensis (Begoniaceae): a rare Hawaiian relict

Wendy L. Clement; Mark C. Tebbitt; Laura L. Forrest; Jaime E. Blair; Luc Brouillet; Torsten Eriksson; Susan M. Swensen

The Begoniaceae consist of two genera, Begonia, with approximately 1400 species that are widely distributed in the tropics, and Hillebrandia, with one species that is endemic to the Hawaiian Islands and the only member of the family native to those islands. To help explain the history of Hillebrandia on the Hawaiian Archipelago, phylogenetic relationships of the Begoniaceae and the Cucurbitales were inferred using sequence data from 18S, rbcL, and ITS, and the minimal age of both Begonia and the Begoniaceae were indirectly estimated. The analyses strongly support the placement of Hillebrandia as the sister group to the rest of the Begoniaceae and indicate that the Hillebrandia lineage is at least 51-65 million years old, an age that predates the current Hawaiian Islands by about 20 million years. Evidence that Hillebrandia sandwicensis has survived on the Hawaiian Archipelago by island hopping from older, now denuded islands to younger, more mountainous islands is presented. Various scenarios for the origin of ancestor to Hillebrandia are considered. The geographic origin of source populations unfortunately remains obscure; however, we suggest a boreotropic or a Malesian-Pacific origin is most likely. Hillebrandia represents the first example in the well-studied Hawaiian flora of a relict genus.


BMC Bioinformatics | 2005

Evolutionary sequence analysis of complete eukaryote genomes

Jaime E. Blair; Prachi Shah; S. Blair Hedges

BackgroundGene duplication and gene loss during the evolution of eukaryotes have hindered attempts to estimate phylogenies and divergence times of species. Although current methods that identify clusters of orthologous genes in complete genomes have helped to investigate gene function and gene content, they have not been optimized for evolutionary sequence analyses requiring strict orthology and complete gene matrices. Here we adopt a relatively simple and fast genome comparison approach designed to assemble orthologs for evolutionary analysis. Our approach identifies single-copy genes representing only species divergences (panorthologs) in order to minimize potential errors caused by gene duplication. We apply this approach to complete sets of proteins from published eukaryote genomes specifically for phylogeny and time estimation.ResultsDespite the conservative criterion used, 753 panorthologs (proteins) were identified for evolutionary analysis with four genomes, resulting in a single alignment of 287,000 amino acids. With this data set, we estimate that the divergence between deuterostomes and arthropods took place in the Precambrian, approximately 400 million years before the first appearance of animals in the fossil record. Additional analyses were performed with seven, 12, and 15 eukaryote genomes resulting in similar divergence time estimates and phylogenies.ConclusionOur results with available eukaryote genomes agree with previous results using conventional methods of sequence data assembly from genomes. They show that large sequence data sets can be generated relatively quickly and efficiently for evolutionary analyses of complete genomes.


Plant Physiology | 2003

Functional and Phylogenetic Analyses of a Conserved Regulatory Program in the Phloem of Minor Veins

Brian G. Ayre; Jaime E. Blair; Robert Turgeon

The minor-vein phloem of mature leaves is developmentally and physiologically distinct from the phloem in the rest of the vascular system. Phloem loading of transport sugars occurs in the minor veins, and consistent with this, galactinol synthase is expressed in the minor veins of melon (Cucumis melo) as part of the symplastic-loading mechanism that operates in this species. A galactinol synthase promoter from melon drives gene expression in the minor-vein companion cells of both transgenic tobacco (Nicotiana tabacum) and Arabidopsis. Neither of these plants use galactinol in the phloem-loading process, implying that the promoter responds to a minor-vein-specific regulatory cascade that is highly conserved across a broad range of eudicotyledons. Detailed analysis of this promoter by truncation and mutagenesis identified three closely coupled sequences that unambiguously modulate tissue specificity. These sequences cooperate in a combinatorial fashion: two promote expression throughout the vascular system of the plant, whereas the third functions to repress expression in the larger bundles. In a complementary approach, phylogenetic footprinting was used to obtain single-nucleotide resolution of conserved sites in orthologous promoters from diverse members of the Cucurbitaceae. This comparative analysis confirmed the importance of the closely coupled sites but also revealed other highly conserved sequences that may modulate promoter strength or contribute to expression patterns outside of the phloem. The conservation of this regulatory design among species that phloem load by different mechanisms supports a model for organismal development in which tissues and cell types are controlled by relatively ancient and conserved paradigms but expression of genes influencing final form and function are relatively plastic.


Phytopathology | 2010

The Promise and Pitfalls of Sequence-Based Identification of Plant-Pathogenic Fungi and Oomycetes

Seogchan Kang; Michele A. Mansfield; Bongsoo Park; David M. Geiser; Kelly Ivors; Michael D. Coffey; Niklaus J. Grünwald; Frank N. Martin; C. André Lévesque; Jaime E. Blair

Sequences of selected marker loci have been widely used for the identification of specific pathogens and the development of sequence-based diagnostic methods. Although such approaches offer several advantages over traditional culture-based methods for pathogen diagnosis and identification, they have their own pitfalls. These include erroneous and incomplete data in reference databases, poor or oversimplified interpretation of search results, and problems associated with defining species boundaries. In this letter, we outline the potential benefits and drawbacks of using sequence data for identification and taxonomic deduction of plant-pathogenic fungi and oomycetes, using phytophthora as a primary example. We also discuss potential remedies for these pitfalls and address why coordinated community efforts are essential to make such remedies more efficient and robust.


PLOS ONE | 2012

Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives.

Jaime E. Blair; Michael D. Coffey; Frank N. Martin

To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred.

Collaboration


Dive into the Jaime E. Blair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seogchan Kang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Frank N. Martin

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

David M. Geiser

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sook-Young Park

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Bongsoo Park

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kelly Ivors

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Niklaus J. Grünwald

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yong-Hwan Lee

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge