Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaime Gomez-Gil is active.

Publication


Featured researches published by Jaime Gomez-Gil.


Sensors | 2012

Brain Computer Interfaces, a Review

Luis F. Nicolas-Alonso; Jaime Gomez-Gil

A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.


Sensors | 2011

Non-Destructive Techniques Based on Eddy Current Testing

Javier Garcia-Martin; Jaime Gomez-Gil; Ernesto Vázquez-Sánchez

Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.


Sensors | 2010

Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends

José Carlos Gamazo-Real; Ernesto Vázquez-Sánchez; Jaime Gomez-Gil

This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.


Sensors | 2011

Steering a tractor by means of an EMG-based human-machine interface.

Jaime Gomez-Gil; Israel San-Jose-Gonzalez; Luis F. Nicolas-Alonso; Sergio Alonso-Garcia

An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.


IEEE Transactions on Industrial Electronics | 2012

A New Method for Sensorless Estimation of the Speed and Position in Brushed DC Motors Using Support Vector Machines

Ernesto Vázquez-Sánchez; Jaime Gomez-Gil; José Carlos Gamazo-Real; J. F. Díez-Higuera

Currently, for many applications, it is necessary to know the speed and position of motors. This can be achieved using mechanical sensors coupled to the motor shaft or using sensorless techniques. The sensorless techniques in brushed dc motors can be classified into two types: 1) techniques based on the dynamic brushed dc motor model and 2) techniques based on the ripple component of the current. This paper presents a new method, based on the ripple component, for speed and position estimation in brushed dc motors, using support vector machines. The proposed method only measures the current and detects the pulses in this signal. The motor speed is estimated by using the inverse distance between the detected pulses, and the position is estimated by counting all detected pulses. The ability to detect ghost pulses and to discard false pulses is the main advantage of this method over other sensorless methods. The performed tests on two fractional horsepower brushed dc motors indicate that the method works correctly in a wide range of speeds and situations, in which the speed is constant or varies dynamically.


Sensors | 2011

A Simple Method to Improve Autonomous GPS Positioning for Tractors

Jaime Gomez-Gil; Sergio Alonso-Garcia; Francisco Javier Gomez-Gil; Tim Stombaugh

Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory.


Sensors | 2013

A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors

Jaime Gomez-Gil; Ruben Ruiz-Gonzalez; Sergio Alonso-Garcia; Francisco Javier Gomez-Gil

Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain.


Expert Systems With Applications | 2015

An Artificial Neural Network based expert system fitted with Genetic Algorithms for detecting the status of several rotary components in agro-industrial machines using a single vibration signal

Víctor Martínez-Martínez; Francisco Javier Gomez-Gil; Jaime Gomez-Gil; Ruben Ruiz-Gonzalez

The statuses of rotary components of agro-industrial machines are estimated.A single vibration point is enough to estimate several rotary elements statuses.An Artificial Neural Network can be used to estimate the rotary elements statuses.Genetic Algorithms improve the estimation performance and the training time.No feature selection stage is needed to estimate the rotary elements statuses. This article proposes (i) the estimation method of an expert system to predict the statuses of several agro-industrial machine rotary components by using a vibration signal acquired from a single point of the machine; and, (ii) a learning method to fit the estimation method. Both methods were evaluated in an agricultural harvester. Vibration signal data were acquired from a single point of the harvester under working conditions, by varying (1) the engine speed status (high speed/low speed), (2) the threshing operating status (on/off), (3) the threshing balance status (balanced/unbalanced), (4) the chopper operating status (on/off), and (5) the chopper balance status (balanced/unbalanced). Positive frequency spectrum coefficients of the vibration signal were used as the only inputs of an Artificial Neural Network (ANN) that predicts the five rotary component statuses. Four Genetic Algorithm (GA) based learning methods to fit the ANN weights and biases were implemented and its performance was compared to select the best one. The prediction system that is developed was able to estimate the rotary component status under consideration with a mean success rate of 92.96%. Moreover, the best GA-based learning method that was implemented reduced the number of generations by 70% in the best case, compared with a random learning method, allowing a similar reduction in the time needed to reach the expected success rate. The results obtained suggest that (i) an ANN-based expert system could estimate the status of the rotary components of an agro-industrial machine to a high degree of accuracy by processing a vibration signal acquired from a single point on its structure; and, (ii) by using the best implementation of the GA-based learning method proposed to fit the ANN weights and biases, it is possible to improve the success rate and by doing so to reduce the time needed to perform the adjustment. The main contribution of this work is the proposal of a classification method that estimates the status of several rotary elements placed each one far from the others employing the signal acquired from only one accelerometer and non-requiring a feature extraction stage.


Sensors | 2014

An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

Ruben Ruiz-Gonzalez; Jaime Gomez-Gil; Francisco Javier Gomez-Gil; Víctor Martínez-Martínez

The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.


Drying Technology | 2015

Moisture Content Prediction in the Switchgrass (Panicum virgatum) Drying Process Using Artificial Neural Networks

Víctor Martínez-Martínez; Jaime Gomez-Gil; Timothy S. Stombaugh; Michael D. Montross; Javier M. Aguiar

This article proposes two artificial neural network (ANN)-based models to characterize the switchgrass drying process: The first one models processes with constant air temperature and relative humidity and the second one models processes with variable air conditions and rainfall. The two ANN-based models proposed estimated the moisture content (MC) as a function of temperature, relative humidity, previous MC, time, and precipitation information. The first ANN-based model describes MC evolution data more accurately than six mathematical empirical equations typically proposed in the literature. The second ANN-based model estimated the MC with a correlation coefficient greater than 98.8%.

Collaboration


Dive into the Jaime Gomez-Gil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge