Jaime Pei Pei Foong
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaime Pei Pei Foong.
Journal of Clinical Investigation | 2013
Ryo Hotta; Lincon A. Stamp; Jaime Pei Pei Foong; Sophie N. McConnell; Annette J. Bergner; Richard B. Anderson; Hideki Enomoto; Donald F. Newgreen; Florian Obermayr; John B. Furness; Heather M. Young
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
The Journal of Physiology | 2012
Jaime Pei Pei Foong; Trung V. Nguyen; John B. Furness; Joel C. Bornstein; Heather M. Young
• Different functional types of neurons within the gut wall form circuits that regulate intestinal motility. • To examine the postnatal development of electrical properties of different classes of enteric neurons, we performed intracellular recordings from neurons in the mouse duodenum at three ages: postnatal day (P)0, P10–11 and adult. • Like adults, two main morphological classes of neurons are present at P0 and P10–11. P0 and P10–11 neurons with Dogiel type II (DII) morphology had multiple long processes that achieved their adult projection length by P10–11. However, they differed electrophysiologically from adult DII neurons in that they displayed prominent afterdepolarizing potentials. • Most electrical properties of neurons with a single long process were mature by P10–11. However, these neurons showed significant postnatal changes in morphology and projection length. • Major morphological and electrophysiological changes in enteric neurons occur postnatally, which could underlie changes in gut motility during development.
Neuroreport | 2009
Jaime Pei Pei Foong; Joel C. Bornstein
Serotonin (5-HT) plays a significant role in the regulation of intestinal secretion of water and electrolytes. The initial aim of this study was to use intracellular recording and specific antagonists to identify roles of 5-HT1A and 5-HT7 receptors of submucosal noncholinergic secretomotor neurons of guinea pig ileum, in vitro. However, it was found that the widely used 5-HT receptor antagonists NAN-190 (5-HT1A) and SB 269970 (5-HT7) both blocked &agr;2-adrenoceptors, and hence depressed inhibitory synaptic potentials and hyperpolarizations evoked by noradrenaline, in these neurons. Both compounds enhanced neurally evoked contractions of the guinea pig vas deferens, an effect characteristic of blockade of &agr;2-adrenoceptors. These results raise significant concerns about studies using NAN-190 and SB 269970 as specific antagonists of serotonin receptors.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2010
Jaime Pei Pei Foong; Laura J. Parry; Rachel M. Gwynne; Joel C. Bornstein
Vasoactive intestinal peptide (VIP) immunoreactive neurons are important secretomotor neurons in the submucous plexus. They are the only submucosal neurons to receive inhibitory inputs and exhibit both noradrenergic and nonadrenergic inhibitory synaptic potentials (IPSPs). The former are mediated by alpha(2)-adrenoceptors, but the receptors mediating the latter have not been identified. We used standard intracellular recording, RT-PCR, and confocal microscopy to test whether 5-HT(1A), SST(1), and/or SST(2) receptors mediate nonadrenergic IPSPs in VIP submucosal neurons in guinea pig ileum in vitro. The specific 5-HT(1A) receptor antagonist WAY 100135 (1 microM) reduced the amplitude of IPSPs, an effect that persisted in the presence of the alpha(2)-adrenoceptor antagonist idazoxan (2 microM), suggesting that 5-HT might mediate a component of the IPSPs. Confocal microscopy revealed that there were many 5-HT-immunoreactive varicosities in close contact with VIP neurons. The specific SSTR(2) antagonist CYN 154806 (100 nM) and a specific SSTR(1) antagonist SRA 880 (3 microM) each reduced the amplitude of nonadrenergic IPSPs and hyperpolarizations evoked by somatostatin. In contrast with the other antagonists, CYN 154806 also reduced the durations of nonadrenergic IPSPs. Effects of WAY 100135 and CYN 154806 were additive. RT-PCR revealed gene transcripts for 5-HT(1A), SST(1), and SST(2) receptors in stripped submucous plexus preparations consistent with the pharmacological data. Although the involvement of other neurotransmitters or receptors cannot be excluded, we conclude that 5-HT(1A), SST(1), and SST(2) receptors mediate nonadrenergic IPSPs in the noncholinergic (VIP) secretomotor neurons. This study thus provides the tools to identify functions of enteric neural pathways that inhibit secretomotor reflexes.
The Journal of Physiology | 2014
Jaime Pei Pei Foong; Iain R. Tough; Helen M. Cox; Joel C. Bornstein
Submucosal neurons are crucial regulators of gut secretion. Despite significant interest in using mouse models for enteric neuropathies, much is still unknown about their submucous innervation. We examined properties of submucosal neurons in the mouse distal colon using immunohistochemical and intracellular recording techniques, and investigated colonic regional differences in neurochemistry and neurally mediated ion transport responses. Two main neurochemical but not electrophysiological classes of neurons were identified: cholinergic (containing choline acetyltransferase) and non‐cholinergic. Non‐cholinergic neurons had one or two axons; the cholinergic neurons examined were uniaxonal. Neurons exhibited predominantly nicotinic fast excitatory postsynaptic potentials and somatic action potentials mediated by tetrodotoxin‐resistant voltage‐gated channels. The distal colon had smaller ganglia, a higher proportion of cholinergic neurons (they remain a minority) and a larger nicotinic secretory component than the proximal colon. Properties of submucosal neurons in the mouse distal colon differ from other colonic regions, and from submucosal neurons in other species.
Developmental Biology | 2013
Marlene M. Hao; Joel C. Bornstein; Pieter Vanden Berghe; Alan E. Lomax; Heather M. Young; Jaime Pei Pei Foong
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.
The Journal of Neuroscience | 2015
Jaime Pei Pei Foong; Caroline S. Hirst; Marlene M. Hao; Sonja J. McKeown; Werend Boesmans; Heather M. Young; Joel C. Bornstein; Pieter Vanden Berghe
Acetylcholine-activating pentameric nicotinic receptors (nAChRs) are an essential mode of neurotransmission in the enteric nervous system (ENS). In this study, we examined the functional development of specific nAChR subtypes in myenteric neurons using Wnt1-Cre;R26R-GCaMP3 mice, where all enteric neurons and glia express the genetically encoded calcium indicator, GCaMP3. Transcripts encoding α3, α4, α7, β2, and β4 nAChR subunits were already expressed at low levels in the E11.5 gut and by E14.5 and, thereafter, α3 and β4 transcripts were the most abundant. The effect of specific nAChR subtype antagonists on evoked calcium activity in enteric neurons was investigated at different ages. Blockade of the α3β4 receptors reduced electrically and chemically evoked calcium responses at E12.5, E14.5, and P0. In addition to the α3β4 antagonist, antagonists to α3β2 and α4β2 also significantly reduced responses by P10–11 and in adult preparations. Therefore, there is an increase in the diversity of functional nAChRs during postnatal development. However, an α7 nAChR antagonist had no effect at any age. Furthermore, at E12.5 we found evidence for unconventional receptors that were responsive to the nAChR agonists 1-dimethyl-4-phenylpiperazinium and nicotine, but were insensitive to the general nicotinic blocker, hexamethonium. Migration, differentiation, and neuritogenesis assays did not reveal a role for nAChRs in these processes during embryonic development. In conclusion, there are significant changes in the contribution of different nAChR subunits to synaptic transmission during ENS development, even after birth. This is the first study to investigate the development of cholinergic transmission in the ENS.
Frontiers in Neuroscience | 2009
Jaime Pei Pei Foong; Joel C. Bornstein
Vasoactive intestinal peptide (VIP) immunoreactive secretomotor neurons in the submucous plexus are involved in mediating bacterial toxin-induced hypersecretion leading to diarrhoea. VIP neurons become hyperexcitable after the mucosa is exposed to cholera toxin, which suggests that the manipulation of the excitability of these neurons may be therapeutic. This study used standard intracellular recording methods to systematically characterize slow excitatory postsynaptic potentials (EPSPs) evoked in submucosal VIP neurons by different stimulus regimes (1, 3 and 15 pulse 30 Hz stimulation), together with their associated input resistances and pharmacology. All slow EPSPs were associated with a significant increase in input resistance compared to baseline values. Slow EPSPs evoked by a single stimulus were confirmed to be purinergic, however, slow EPSPs evoked by 15 pulse trains were non-purinergic and those evoked by 3 pulse trains were mixed. NK1 or NK3 receptor antagonists did not affect slow EPSPs. The group I mGluR receptor antagonist, PHCCC reduced the amplitude of purinergic and non-purinergic slow EPSPs. Blocking mGluR1 receptors depressed the overall response to 3 and 15 pulse trains, but this effect was inconsistent, while blockade of mGluR5 receptors had no effect on the non-purinergic slow EPSPs. Thus, although other receptors are almost certainly involved, our data indicate that there are at least two pharmacologically distinct types of slow EPSPs in the VIP secretomotor neurons: one mediated by P2Y receptors and the other in part by mGluR1 receptors.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2014
Candice Fung; Petra Unterweger; Laura J. Parry; Joel C. Bornstein; Jaime Pei Pei Foong
In the gastrointestinal tract, vasoactive intestinal peptide (VIP) is found exclusively within neurons. VIP regulates intestinal motility via neurally mediated and direct actions on smooth muscle and secretion by a direct mucosal action, and via actions on submucosal neurons. VIP acts via VPAC1 and VPAC2 receptors; however, the subtype involved in its neural actions is unclear. The neural roles of VIP and VPAC1 receptors (VPAC1R) were investigated in intestinal motility and secretion in guinea pig jejunum. Expression of VIP receptors across the jejunal layers was examined using RT-PCR. Submucosal and myenteric neurons expressing VIP receptor subtype VPAC1 and/or various neurochemical markers were identified immunohistochemically. Isotonic muscle contraction was measured in longitudinal muscle-myenteric plexus preparations. Electrogenic secretion across mucosa-submucosa preparations was measured in Ussing chambers by monitoring short-circuit current. Calretinin(+) excitatory longitudinal muscle motor neurons expressed VPAC1R. Most cholinergic submucosal neurons, notably NPY(+) secretomotor neurons, expressed VPAC1R. VIP (100 nM) induced longitudinal muscle contraction that was inhibited by TTX (1 μM), PG97-269 (VPAC1 antagonist; 1 μM), and hyoscine (10 μM), but not by hexamethonium (200 μM). VIP (50 nM)-evoked secretion was depressed by hyoscine or PG97-269 and involved a small TTX-sensitive component. PG97-269 and TTX combined did not further depress the VIP response observed in the presence of PG97-269 alone. We conclude that VIP stimulates ACh-mediated longitudinal muscle contraction via VPAC1R on cholinergic motor neurons. VIP induces Cl(-) secretion directly via epithelial VPAC1R and indirectly via VPAC1R on cholinergic secretomotor neurons. No evidence was obtained for involvement of other neural VIP receptors.
Frontiers in Neuroscience | 2010
Joel C. Bornstein; Kathryn A. Marks; Jaime Pei Pei Foong; Rachel M. Gwynne; Zhi Hong Wang
Varicosities immunoreactive for nitric oxide synthase (NOS) make synaptic connections with submucosal neurons in the guinea-pig small intestine, but the effects of nitric oxide (NO) on these neurons are unknown. We used intracellular recording to characterize effects of sodium nitroprusside (SNP, NO donor) and nitro-l-arginine (NOLA, NOS inhibitor), on inhibitory synaptic potentials (IPSPs), slow excitatory synaptic potentials (EPSPs) and action potential firing in submucosal neurons of guinea-pig ileum in vitro. Recordings were made from neurons with the characteristic IPSPs of non-cholinergic secretomotor neurons. SNP (100 μM) markedly enhanced IPSPs evoked by single stimuli applied to intermodal strands and IPSPs evoked by trains of 2–10 pulses (30 Hz). Both noradrenergic (idazoxan-sensitive) and non-adrenergic (idazoxan-insensitive) IPSPs were affected. SNP enhanced hyperpolarizations evoked by locally applied noradrenaline or somatostatin. SNP did not affect slow EPSPs evoked by single stimuli, but depressed slow EPSPs evoked by stimulus trains. NOLA (100 μM) depressed IPSPs evoked by one to three stimulus pulses and enhanced slow EPSPs evoked by trains of two to three stimuli (30 Hz). SNP also increased the number of action potentials and the duration of firing evoked by prolonged (500 or 1000 ms) depolarizing current pulses, but NOLA had no consistent effect on action potential firing. We conclude that neurally released NO acts post-synaptically to enhance IPSPs and depress slow EPSPs, but may enhance the intrinsic excitability of these neurons. Thus, NOS neurons may locally regulate several secretomotor pathways ending on common neurons.