Jaime Peña
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaime Peña.
Journal of Bone and Mineral Research | 2013
Claus-C. Glüer; Fernando Marin; Johann D. Ringe; Federico Hawkins; Rüdiger Möricke; Nikolaos Papaioannu; Parvis Farahmand; S. Minisola; Guillermo Martínez; Joan M Nolla; Christopher Niedhart; N. Guañabens; Ranuccio Nuti; Emilio Martín-Mola; Friederike Thomasius; Georgios Kapetanos; Jaime Peña; Christian Graeff; Helmut Petto; Beatriz Sanz; Andreas G. Reisinger; Philippe K. Zysset
Data on treatment of glucocorticoid‐induced osteoporosis (GIO) in men are scarce. We performed a randomized, open‐label trial in men who have taken glucocorticoids (GC) for ≥3 months, and had an areal bone mineral density (aBMD) T‐score ≤ –1.5 standard deviations. Subjects received 20 μg/d teriparatide (n = 45) or 35 mg/week risedronate (n = 47) for 18 months. Primary objective was to compare lumbar spine (L1–L3) BMD measured by quantitative computed tomography (QCT). Secondary outcomes included BMD and microstructure measured by high‐resolution QCT (HRQCT) at the 12th thoracic vertebra, biomechanical effects for axial compression, anterior bending, and axial torsion evaluated by finite element (FE) analysis from HRQCT data, aBMD by dual X‐ray absorptiometry, biochemical markers, and safety. Computed tomography scans were performed at 0, 6, and 18 months. A mixed model repeated measures analysis was performed to compare changes from baseline between groups. Mean age was 56.3 years. Median GC dose and duration were 8.8 mg/d and 6.4 years, respectively; 39.1% of subjects had a prevalent fracture, and 32.6% received prior bisphosphonate treatment. At 18 months, trabecular BMD had significantly increased for both treatments, with significantly greater increases with teriparatide (16.3% versus 3.8%; p = 0.004). HRQCT trabecular and cortical variables significantly increased for both treatments with significantly larger improvements for teriparatide for integral and trabecular BMD and bone surface to volume ratio (BS/BV) as a microstructural measure. Vertebral strength increases at 18 months were significant in both groups (teriparatide: 26.0% to 34.0%; risedronate: 4.2% to 6.7%), with significantly higher increases in the teriparatide group for all loading modes (0.005 < p < 0.015). Adverse events were similar between groups. None of the patients on teriparatide but five (10.6%) on risedronate developed new clinical fractures (p = 0.056). In conclusion, in this 18‐month trial in men with GIO, teriparatide showed larger improvements in spinal BMD, microstructure, and FE‐derived strength than risedronate.
Bone | 2013
Christian Graeff; Fernando Marin; Helmut Petto; Ole Kayser; Andreas G. Reisinger; Jaime Peña; Philippe K. Zysset; Claus-Christian Glüer
High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1-L3 and total hip, QCT of L1-L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8-9.0], Tb.BMD L1-L3: 3.95 [1.8-8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29-5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r(2)=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.
Bone | 2015
Christian Graeff; Graeme Campbell; Jaime Peña; Jan Borggrefe; Desmond Padhi; Allegra Kaufman; Sung Chang; Cesar Libanati; Claus-Christian Glüer
Romosozumab inhibits sclerostin, thereby increasing bone formation and decreasing bone resorption. This dual effect of romosozumab leads to rapid and substantial increases in areal bone mineral density (aBMD) as measured by dual-energy X-ray absorptiometry (DXA). In a phase 1b, randomized, double-blind, placebo-controlled study, romosozumab or placebo was administered to 32 women and 16 men with low aBMD for 3 months, with a further 3-month follow-up: women received six doses of 1 or 2mg/kg every 2 weeks (Q2W) or three doses of 2 or 3mg/kg every 4 weeks (Q4W); men received 1mg/kg Q2W or 3mg/kg Q4W. Quantitative computed tomography (QCT) scans at lumbar (L1-2) vertebrae and high-resolution QCT (HR-QCT) scans at thoracic vertebra (T12) were analyzed in a subset of subjects at baseline, month 3, and month 6. The QCT subset included 24 romosozumab and 9 placebo subjects and the HR-QCT subset included 11 romosozumab and 3 placebo subjects. The analyses pooled the romosozumab doses. Linear finite element modeling of bone stiffness was performed. Compared with placebo, the romosozumab group showed improvements at month 3 for trabecular BMD by QCT and HR-QCT, HR-QCT trabecular bone volume fraction (BV/TV) and separation, density-weighted cortical thickness, and QCT stiffness (all p<0.05). At month 6, improvements from baseline were observed in QCT trabecular BMD and stiffness, and in HR-QCT BMD, trabecular BV/TV and separation, density-weighted cortical thickness, and stiffness in the romosozumab group (all p<0.05 compared with placebo). The mean (SE) increase in HR-QCT stiffness with romosozumab from baseline was 26.9% ± 6.8% and 35.0% ±6.8% at months 3 and 6, respectively; subjects administered placebo had changes of -2.7% ± 13.4% and -6.4% ± 13.4%, respectively. In conclusion, romosozumab administered for 3 months resulted in rapid and large improvements in trabecular and cortical bone mass and structure as well as whole bone stiffness, which continued 3 months after the last romosozumab dose.
Journal of Bone and Mineral Research | 2015
Jan Borggrefe; Sarah Giravent; Felix Thomsen; Jaime Peña; Graeme Campbell; Asmus Wulff; Andreas Günther; Martin Heller; Claus C. Glüer
Computed tomography (CT) is used for staging osteolytic lesions and detecting fractures in patients with multiple myeloma (MM). In the OsteoLysis of Metastases and Plasmacell‐infiltration Computed Tomography 2 study (OLyMP‐CT) study we investigated whether patients with and without vertebral fractures show differences in bone mineral density (BMD) or microstructure that could be used to identify patients at risk for fracture. We evaluated whole‐body CT scans in a group of 104 MM patients without visible osteolytic lesions using an underlying lightweight calibration phantom (Image Analysis Inc., Columbia, KY, USA). QCT software (StructuralInsight) was used for the assessment of BMD and bone structure of the T11 or T12 vertebral body. Age‐adjusted standardized odds ratios (sORs) per SD change were derived from logistic regression analyses, and areas under the receiver operating characteristics (ROC) curve (AUCs) analyses were calculated. Forty‐six of the 104 patients had prevalent vertebral fractures (24/60 men, 22/44 women). Patients with fractures were not significantly older than patients without fractures (mean ± SD, 64 ± 9.2 versus 62 ± 12.3 years; p = 0.4). Trabecular BMD in patients with fractures versus without fractures was 169 ± 41 versus 192 ± 51 mg/cc (AUC = 0.62 ± 0.06, sOR = 1.6 [1.1 to 2.5], p = 0.02). Microstructural variables achieved optimal discriminatory power at bone thresholds of 150 mg/cc. Best fracture discrimination for single microstructural variables was observed for trabecular separation (Tb.Sp) (AUC = 0.72 ± 0.05, sOR = 2.4 (1.5 to 3.9), p < 0.0001). In multivariate models AUCs improved to 0.77 ± 0.05 for BMD and Tb.Sp, and 0.79 ± 0.05 for Tb.Sp and trabecular thickness (Tb.Th). Compared to BMD values, these improvements of AUC values were statistically significant (p < 0.0001). In MM patients, QCT‐based analyses of bone structure derived from routine CT scans permit discrimination of patients with and without vertebral fractures. Rarefaction of the trabecular network due to plasma cell infiltration and osteoporosis can be measured. Deterioration of microstructural measures appear to be of value for vertebral fracture risk assessment and may indicate early stages of osteolytic processes not yet visible.
Journal of Bone and Mineral Research | 2017
G.M. Campbell; Jaime Peña; Sarah Giravent; Felix Thomsen; Timo Damm; Claus-C. Glüer; Jan Borggrefe
Multiple myeloma (MM) is a malignant plasma cell disease associated with severe bone destruction. Surgical intervention is often required to prevent vertebral body collapse and resulting neurological complications; however, its necessity is determined by measuring lesion size or number, without considering bone biomechanics. Finite element (FE) modeling, which simulates the physiological loading, may improve the prediction of fragility. To test this, we developed a quantitative computed tomography (QCT)‐based FE model of the vertebra and applied it to a dataset of MM patients with and without prevalent fracture. FE models were generated from vertebral QCT scans of the T12 (T11 if T12 was fractured) of 104 MM patients, 45 with fracture and 59 without, using a low‐dose scan protocol (1.5 mm slice thickness, 4.0 to 6.5 mSv effective dose). A calibration phantom enabled the conversion of the CT Hounsfield units to FE material properties. Compressive loading of the vertebral body was simulated and the stiffness, yield load, and work to yield determined. To compare the parameters between fracture and nonfracture groups, t tests were used, and standardized odds ratios (sOR, normalized to standard deviation) and 95% confidence intervals were calculated. FE parameters were compared to mineral and structural parameters using linear regression. Patients with fracture showed lower vertebral stiffness (–15.2%; p = 0.010; sOR = 1.73; 95% CI, 1.11 to 2.70), yield force (–21.5%; p = 0.002; sOR = 2.09; 95% CI, 1.27 to 3.43), and work to yield (–27.4%; p = 0.001; sOR = 2.28; 95% CI, 1.33 to 3.92) compared to nonfracture patients. All parameters correlated significantly with vBMD (stiffness: R2 = 0.57, yield force: R2 = 0.59, work to yield: R2 = 0.50, p < 0.001), BV/TV (stiffness: R2 = 0.56, yield force: R2 = 0.58, work to yield: R2 = 0.49, p < 0.001), and Tb.Sp (stiffness: R2 = 0.51, yield force: R2 = 0.53, work to yield: R2 = 0.45, p < 0.001). FE modeling identified MM patients with compromised mechanical integrity of the vertebra. Higher sOR values were obtained for the biomechanical compared to structural or mineral measures, suggesting that FE modeling improves fragility assessment in these patients.
Medical Physics | 2016
Felix Thomsen; Jaime Peña; Yongtao Lu; Gerd Huber; Michael M. Morlock; Claus-Christian Glüer; Claudio Delrieux
PURPOSE Existing microstructure parameters are able to predict vertebral in vitro failure load, but for noisy in vivo data more complex algorithms are needed for a robust assessment. METHODS A new algorithm is proposed for the microstructural analysis of trabecular bone under in vivo quantitative computed tomography (QCT). Five fractal parameters are computed: (1) the average local fractal dimension FD, (2) its standard deviation FD.SD, (3) the fractal rod volume ratio fRV/BV, (4) the average fractal trabecular thickness fTb.Th, and (5) its coefficient of variation fTb.Th.CV. The algorithm requires neither an explicit skeletonization of the trabecular bone, nor a well-defined transition between bone and marrow phases. Two experiments were conducted to compare the fractal with established microstructural parameters. In the first, 20 volumes-of-interest of embedded vertebrae phantoms were scanned five times under QCT and high-resolution (HR-)QCT and once under peripheral HRQCT (HRpQCT), to derive accuracy and precision. In the second experiment, correlations between in vitro HRQCT structural parameters were obtained from 76 human T11, T12, or L1 vertebrae. In vitro fracture data were available for a subset of 17 human T12 vertebrae so that linear regression models between failure load and microstructural HRQCT parameters could be analyzed. RESULTS The results showed correlations of fTb.Th and fRV/BV with their nonfractal pendants trabecular thickness (Tb.Th) and respective structure model index (SMI) while higher precision and accuracy was observed on the fractal measures. Linear models of bone mineral density with two and three fractal microstructural HRQCT parameters explained 86% and 90% (adjusted R2) of the failure load and significantly improved the linear models based only on BMD and established standard microstructural parameters (68%-77% adjusted R2). CONCLUSIONS The application of fractal methods may grant further insight into the study of bone quality in vivo when image resolution and quality are less than optimal for current standard methods.
Medical Physics | 2016
Jaime Peña; Felix Thomsen; Timo Damm; Graeme Campbell; Jan Bastgen; Reinhard Barkmann; Claus C. Glüer
PURPOSE Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. METHODS The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. The methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1-1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. RESULTS 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm(3) corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. CONCLUSIONS The GTP and MF methods on HR-QCT images permit noninvasive localization and densitometric assessment of marrow fat with residual accuracy errors sufficient to study disorders and therapies known to affect bone marrow composition. Additionally, the methods can be used to correct BMD for fat induced bias. Application and testing in vivo and in longitudinal studies are warranted to determine the clinical performance and value of these methods.
Bone | 2018
Timo Damm; Jaime Peña; Graeme Campbell; Jan Bastgen; Reinhard Barkmann; Claus-Christian Glüer
Vertebral whole bone strength is substantially affected by cortical bone properties. Disease and therapy may affect cancellous and cortical bone differently. Unlike Dual X-ray Absorptiometry (DXA), Quantitative Computed Tomography (QCT) permits selective assessment of cortical and cancellous bone, but image quality limits the accuracy. We present an image processing method specifically adopted to thin cortices that substantially improves accuracy. Ten human vertebrae embedded in epoxy resin were imaged using clinical QCT and High-Resolution QCT (HR-QCT) protocols, both acquired on a clinical whole body CT scanner, whereas high resolution peripheral QCT (HR-pQCT) was used as gold standard. Microstructural variables and BMD were calculated using in-house software StructuralInsight for QCT and HR-QCT and the manufacturers μCT evaluation software for HR-pQCT. An adjusted measure, a deconvolved cortical thickness (dcCt.Th), corrected for partial volume effects, was derived applying the new Iterative Convolution OptimizatioN (ICON) method. Direct measurements of cortical thickness (Ct.Th) showed substantial overestimation with mean ± standard deviation of 1.8 ± 0.5 mm for QCT and 1.5 ± 0.3 mm for HR-QCT compared to 0.37 ± 0.07 mm using HR-pQCT. Correlations of both QCT (r2 = 0.05, p > 0.5.) and HR-QCT (r2 = 0.38, p = 0.060) with the gold standard HR-pQCT were not significant. Also QCT-based BMD and BMC as well as HR-QCT-based BMD did not show a significant correlation with the gold standard approach. Only HR-QCT-based BMC showed a modest correlation (r2 = 0.59, p = 0.01) After applying ICON corrections, dcCt.Th resulted in 0.52 ± 0.09 mm for QCT and 0.43 ± 0.07 mm for HR-QCT, both significantly correlated to HR-pQCT (r2 = 0.75, p = 0.0012 and r2 = 0.93, p < 0.0001, respectively). The average overestimation bias of Ct.Th was reduced from (402 ± 157)% to (45 ± 17)% for QCT and from (330 ± 69)% to (19 ± 8)% for HR-QCT. Due to inaccurate segmentation uncorrected QCT-based Ct.Th measures as well as BMD and BMC showed no correlation to HR-pQCT and thus such bias cortical data can be misleading. The application of ICON reduced random overestimation bias to about 50 μm and 20 μm for QCT and HR-QCT, respectively, leading to a recovery of a significant correlation with the reference data of HR-pQCT. This reveals the potential for fairly accurate assessment of cortical thickness, allowing to better characterize cortical mechanical competence. These results warrant testing of the performance in vivo.
Bone | 2016
G.M. Campbell; S. Tiwari; Christine Hofbauer; Ann-Kristin Picke; Martina Rauner; Gerd Huber; Jaime Peña; Timo Damm; Reinhard Barkmann; Michael M. Morlock; Lorenz C. Hofbauer; C. C. Glüer
Journal of Bone and Mineral Metabolism | 2012
Sanjay Tiwari; Christian Schem; Ann-Christin Lorenzen; Ole Kayser; Claas Wiese; Christian Graeff; Jaime Peña; Robert P. Marshall; Martin Heller; Holger Kalthoff; Walter Jonat; Claus-C. Glüer