Jaime Toney
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaime Toney.
Nature | 2011
Peter J. Fawcett; Josef P. Werne; R. Scott Anderson; Jeffrey M. Heikoop; Erik T. Brown; Melissa A. Berke; Susan J. Smith; Fraser Goff; Linda Donohoo-Hurley; Luz Maria Cisneros-Dozal; Stefan Schouten; Jaap S. Sinninghe Damsté; Yongsong Huang; Jaime Toney; Julianna Eileen Fessenden; Giday WoldeGabriel; Viorel Atudorei; John W. Geissman; Craig D. Allen
The potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern. Multi-year droughts during the instrumental period and decadal-length droughts of the past two millennia were shorter and climatically different from the future permanent, ‘dust-bowl-like’ megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity. Here we show that periods of aridity lasting centuries to millennia occurred in the southwestern US during mid-Pleistocene interglacials. Using molecular palaeotemperature proxies to reconstruct the mean annual temperature (MAT) in mid-Pleistocene lacustrine sediment from the Valles Caldera, New Mexico, we found that the driest conditions occurred during the warmest phases of interglacials, when the MAT was comparable to or higher than the modern MAT. A collapse of drought-tolerant C4 plant communities during these warm, dry intervals indicates a significant reduction in summer precipitation, possibly in response to a poleward migration of the subtropical dry zone. Three MAT cycles ∼2 °C in amplitude occurred within Marine Isotope Stage (MIS) 11 and seem to correspond to the muted precessional cycles within this interglacial. In comparison with MIS 11, MIS 13 experienced higher precessional-cycle amplitudes, larger variations in MAT (4–6 °C) and a longer period of extended warmth, suggesting that local insolation variations were important to interglacial climatic variability in the southwestern US. Comparison of the early MIS 11 climate record with the Holocene record shows many similarities and implies that, in the absence of anthropogenic forcing, the region should be entering a cooler and wetter phase.
International Journal of Wildland Fire | 2008
R.S. Anderson; Craig D. Allen; Jaime Toney; Renata B. Jass; A. N. Bair
Our understanding of the present forest structure of western North America hinges on our ability to determine antecedent forest conditions. Sedimentary records from lakes and bogs in the southern Rocky Mountains of Colorado and New Mexico provide information on the relationships between climate and vegetation change, and fire history since deglaciation. We present a new pollen record from Hunters Lake (Colorado) as an example of a high-elevation vegetation history from the southern Rockies. We then present a series of six sedimentary records from ~2600 to 3500-m elevation, including sites presently at the alpine–subalpine boundary, within the Picea engelmannii–Abies lasiocarpa forest and within the mixed conifer forest, to determine the history of fire in high-elevation forests there. High Artemisia and low but increasing percentages of Picea and Pinus suggest vegetation prior to 13 500 calendar years before present (cal yr BP) was tundra or steppe, with open spruce woodland to ~11 900 cal yr BP. Subalpine forest (Picea engelmannii, Abies lasiocarpa) existed around the lake for the remainder of the Holocene. At lower elevations, Pinus ponderosa and/or contorta expanded 11 900 to 10 200 cal yr BP; mixed conifer forest expanded ~8600 to 4700 cal yr BP; and Pinus edulis expanded after ~4700 cal yr BP. Sediments from lake sites near the alpine–subalpine transition contained five times less charcoal than those entirely within subalpine forests, and 40 times less than bog sites within mixed conifer forest. Higher fire episode frequencies occurred between ~12 000 and 9000 cal yr BP (associated with the initiation or expansion of south-west monsoon and abundant lightning, and significant biomass during vegetation turnover) and at ~2000–1000 cal yr BP (related to periodic droughts during the long-term trend towards wetter conditions and greater biomass). Fire episode frequencies for subalpine–alpine transition and subalpine sites were on average 5 to 10 fire events/1000 years over the Holocene, corresponding to one fire event every ~100 to 200 years. (5) Our Holocene-length sedimentary charcoal records provide additional evidence for the anomalous nature of the 20th-century fire regime, where fires were largely suppressed as a national policy.
International Journal of Wildland Fire | 2008
Craig D. Allen; R. Scott Anderson; Renata B. Jass; Jaime Toney; Christopher H. Baisan
Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuenos Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ~1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America.
Geological Society of America Bulletin | 2011
Gonzalo Jiménez-Moreno; R. Scott Anderson; Viorel Atudorei; Jaime Toney
High-resolution pollen, charcoal, δ13C, total organic carbon (TOC), and magnetic susceptibility data from sediment cores from a montane lake in northern Colorado record variations in vegetation, fire history, and sedimentation since 14.5 ka (1 ka = 1000 cal yr B.P.). This record shows warm conditions during the Bolling-Allerod and the coldest conditions in this area during the Younger Dryas event. Warming occurred throughout the early and middle Holocene, lasting until ca. 5 ka, when the warmest and wettest summer conditions were recorded. Progressive climate cooling and enhanced winter precipitation are then observed until present day. These long-term climatic trends correlate to changes in summer insolation. Charcoal accumulation rates (CHAR) increased along with the arboreal vegetation, from minima in the Late Glacial period to maxima during the early and middle Holocene, suggesting that charcoal influx was also controlled by climate and vegetation. TOC and δ13C show a progressive increase and a decrease trend during the late Pleistocene and Holocene, respectively, related to changes in vegetation and productivity in the lake. Major peaks in the CHAR record correspond with peaks in magnetic susceptibility, indicating enhanced fire-induced erosion and sedimentation. Millennial- and centennial-scale changes are also observed throughout the different proxy records. They exhibit strong correlations with climate records from distant regions, including Greenland and the North Atlantic, providing evidence for global teleconnections among regional climates. A solar-climate connection is suggested by prominent ca. 225 and 390 yr cycles, which may correlate with the 208 yr (Suess) and 400 yr solar cycles.
Quaternary Research | 2003
Jaime Toney; Donald T. Rodbell; Norton G. Miller
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.
Scientific Reports | 2017
Antonio García-Alix; Francisco J Jiménez-Espejo; Jaime Toney; Gonzalo Jiménez-Moreno; María J. Ramos-Román; R. Scott Anderson; Patricia Ruano; I. Queralt; Antonio Delgado Huertas; Junichiro Kuroda
Recent studies have proved that high elevation environments, especially remote wetlands, are exceptional ecological sensors of global change. For example, European glaciers have retreated during the 20th century while the Sierra Nevada National Park in southern Spain witnessed the first complete disappearance of modern glaciers in Europe. Given that the effects of climatic fluctuations on local ecosystems are complex in these sensitive alpine areas, it is crucial to identify their long-term natural trends, ecological thresholds, and responses to human impact. In this study, the geochemical records from two adjacent alpine bogs in the protected Sierra Nevada National Park reveal different sensitivities and long-term environmental responses, despite similar natural forcings, such as solar radiation and the North Atlantic Oscillation, during the late Holocene. After the Industrial Revolution both bogs registered an independent, abrupt and enhanced response to the anthropogenic forcing, at the same time that the last glaciers disappeared. The different response recorded at each site suggests that the National Park and land managers of similar regions need to consider landscape and environmental evolution in addition to changing climate to fully understand implications of climate and human influence.
Scientific Data | 2018
Antonio García-Alix; Francisco J Jiménez-Espejo; Gonzalo Jiménez-Moreno; Jaime Toney; María J. Ramos-Román; Jon Camuera; R. Scott Anderson; Antonio Delgado-Huertas; Francisca Martínez-Ruiz; I. Queralt
Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ∼2500 to ∼3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.
Climate Dynamics | 2008
Mitch J. Power; J. Marlon; N. Ortiz; Patrick J. Bartlein; Sandy P. Harrison; Francis E. Mayle; Aziz Ballouche; Richard H. W. Bradshaw; Christopher Carcaillet; Carlos E. Cordova; Scott Mooney; P. I. Moreno; I. C. Prentice; K. Thonicke; Willy Tinner; C. Whitlock; Yanyin Zhang; Y. Zhao; A. A. Ali; R. S. Anderson; R. Beer; Hermann Behling; C. Briles; K. J. Brown; A. Brunelle; M. Bush; Philip Camill; G. Q. Chu; James S. Clark; Daniele Colombaroli
Geochimica et Cosmochimica Acta | 2010
Jaime Toney; Yongsong Huang; Sherilyn C. Fritz; Paul A. Baker; Eric C. Grimm; P. Nyren
Earth and Planetary Science Letters | 2010
Susanna Theroux; William J. D'Andrea; Jaime Toney; Linda A. Amaral-Zettler; Yongsong Huang