Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaimeen D. Majmudar is active.

Publication


Featured researches published by Jaimeen D. Majmudar.


ACS Chemical Biology | 2013

Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate

Dahvid Davda; Mahmoud El Azzouny; Christopher T.M.B. Tom; Jeannie L. Hernandez; Jaimeen D. Majmudar; Robert T. Kennedy; Brent R. Martin

2-Bromohexadecanoic acid, or 2-bromopalmitate, was introduced nearly 50 years ago as a nonselective inhibitor of lipid metabolism. More recently, 2-bromopalmitate re-emerged as a general inhibitor of protein S-palmitoylation. Here, we investigate the cellular targets of 2-bromopalmitate through the synthesis and application of click-enabled analogues. In cells, 2-bromopalmitate is converted to 2-bromopalmitoyl-CoA, although less efficiently than free palmitate. Once conjugated to CoA, probe reactivity is dramatically enhanced. Importantly, both 2-bromopalmitate and 2-bromopalmitoyl-CoA label DHHC palmitoyl acyl transferases (PATs), the enzymes that catalyze protein S-palmitoylation. Mass spectrometry analysis of enriched 2-bromopalmitate targets identified PAT enzymes, transporters, and many palmitoylated proteins, with no observed preference for CoA-dependent enzymes. These data question whether 2-bromopalmitate (or 2-bromopalmitoyl-CoA) blocks S-palmitoylation by inhibiting protein acyl transferases, or by blocking palmitate incorporation by direct covalent competition. Overall, these findings highlight the promiscuous reactivity of 2BP and validate clickable 2BP analogues as activity-based probes of diverse membrane associated enzymes.


Cell Host & Microbe | 2015

Global Analysis of Palmitoylated Proteins in Toxoplasma gondii

Ian T. Foe; Matthew A. Child; Jaimeen D. Majmudar; Shruthi Krishnamurthy; Wouter A. van der Linden; Gary E. Ward; Brent R. Martin; Matthew Bogyo

Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen.


Current Opinion in Chemical Biology | 2013

Profiling and inhibiting reversible palmitoylation.

Jeannie L. Hernandez; Jaimeen D. Majmudar; Brent R. Martin

Protein palmitoylation describes the posttranslational modification of cysteines by a thioester-linked long-chain fatty acid. This modification is critical for membrane association, spatial organization, and the proper activity of hundreds of membrane-associated proteins. Palmitoylation is continuously remodeled, both by spontaneous hydrolysis and enzyme-mediated de-palmitoylation. Bioorthogonal pulse-chase labeling approaches have highlighted the role of protein thioesterases as key regulators of palmitoylation dynamics. Importantly, thioesterases are critical for regulating the spatial organization of key oncogenic proteins, such as Ras GTPases. New inhibitors, probes, and proteomics methods have put a spotlight on this emerging posttranslational modification. These tools promise to advance our understanding the enzymatic regulation of dynamic palmitoylation, and present new opportunities for drug development.


Journal of the American Chemical Society | 2016

Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications

Jaimeen D. Majmudar; Aaron M. Konopko; Kristin J. Labby; Christopher T.M.B. Tom; John E. Crellin; Ashesh Prakash; Brent R. Martin

Cysteine S-nitrosation and S-sulfination are naturally occurring post-translational modifications (PTMs) on proteins induced by physiological signals and redox stress. Here we demonstrate that sulfinic acids and nitrosothiols react to form a stable thiosulfonate bond, and leverage this reactivity using sulfinate-linked probes to enrich and annotate hundreds of endogenous S-nitrosated proteins. In physiological buffers, sulfinic acids do not react with iodoacetamide or disulfides, enabling selective alkylation of free thiols and site-specific analysis of S-nitrosation. In parallel, S-nitrosothiol-linked probes enable enrichment and detection of endogenous S-sulfinated proteins, confirming that a single sulfinic acid can react with a nitrosothiol to form a thiosulfonate linkage. Using this approach, we find that hydrogen peroxide addition increases S-sulfination of human DJ-1 (PARK7) at Cys106, whereas Cys46 and Cys53 are fully oxidized to sulfonic acids. Comparative gel-based analysis of different mouse tissues reveals distinct profiles for both S-nitrosation and S-sulfination. Quantitative proteomic analysis demonstrates that both S-nitrosation and S-sulfination are widespread, yet exhibit enhanced occupancy on select proteins, including thioredoxin, peroxiredoxins, and other validated redox active proteins. Overall, we present a direct, bidirectional method to profile select redox cysteine modifications based on the unique nucleophilicity of sulfinic acids.


Molecular Pharmaceutics | 2015

Substrate-competitive activity-based profiling of ester prodrug activating enzymes

Hao Xu; Jaimeen D. Majmudar; Dahvid Davda; Phani Ghanakota; Ki H. Kim; Heather A. Carlson; H. D. Hollis Showalter; Brent R. Martin; Gordon L. Amidon

Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and preclinical development of ester prodrugs.


Biopolymers | 2014

Strategies for profiling native S-nitrosylation.

Jaimeen D. Majmudar; Brent R. Martin

Cysteine is a uniquely reactive amino acid, capable of undergoing both nucleophlilic and oxidative post-translational modifications. One such oxidation reaction involves the covalent modification of cysteine via the gaseous second messenger nitric oxide (NO), termed S-nitrosylation (SNO). This dynamic post-translational modification is involved in the redox regulation of proteins across all phylogenic kingdoms. In mammals, calcium-dependent activation of NO synthase triggers the local release of NO, which activates nearby guanylyl cyclases and cGMP-dependent pathways. In parallel, diffusible NO can locally modify redox active cellular thiols, functionally modulating many redox sensitive enzymes. Aberrant SNO is implicated in the pathology of many diseases, including neurodegeneration, inflammation, and stroke. In this review, we discuss current methods to label sites of SNO for biochemical analysis. The most popular method involves a series of biochemical steps to mask free thiols followed by selective nitrosothiol reduction and capture. Other emerging methods include mechanism-based phosphine probes and mercury enrichment chemistry. By bridging new enrichment approaches with high-resolution mass spectrometry, large-scale analysis of protein nitrosylation has highlighted new pathways of oxidative regulation.


ChemBioChem | 2017

Profiling protein S-sulfination with maleimide-linked probes

Yu Hsuan Kuo; Aaron M. Konopko; Nicholas B. Borotto; Jaimeen D. Majmudar; Sarah E. Haynes; Brent R. Martin

Cysteine residues are susceptible to oxidation to form S‐sulfinyl (R‐SO2H) and S‐sulfonyl (R‐SO3H) post‐translational modifications. Here we present a simple bioconjugation strategy to label S‐sulfinated proteins by using reporter‐linked maleimides. After alkylation of free thiols with iodoacetamide, S‐sulfinated cysteines react with maleimide to form a sulfone Michael adduct that remains stable under acidic conditions. Using this sequential alkylation strategy, we demonstrate differential S‐sulfination across mouse tissue homogenates, as well as enhanced S‐sulfination following pharmacological induction of endoplasmic reticulum stress, lipopolysaccharide stimulation, and inhibitors of the electron transport chain. Overall, this study reveals a broadened profile of maleimide reactivity across cysteine modifications, and outlines a simple method for profiling the physiological role of cysteine S‐sulfination in disease.


Analytical Chemistry | 2017

Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics

Sarah E. Haynes; Daniel A. Polasky; Sugyan M. Dixit; Jaimeen D. Majmudar; Kieran Neeson; Brandon T. Ruotolo; Brent R. Martin

High mass accuracy, data-dependent acquisition is the current standard method in mass spectrometry-based peptide annotation and quantification. In high complexity samples, limited instrument scan speeds often result in under-sampling. In contrast, all-ion data-independent acquisition methods bypass precursor selection, alternating high and low collision energies to analyze product and precursor ions across wide mass ranges. Despite capturing data for all events, peptide annotation is limited by inadequate alignment algorithms or overlapping ions. Ion mobility separation can add an orthogonal analytical dimension, reducing ion interference to improve reproducibility, peak capacity, and peptide identifications to rival modern hybrid quadrupole orbitrap systems. Despite the advantages of ion mobility separation in complex proteomics analyses, there has been no quantitative measure of ion mobility resolution in a complex proteomic sample. Here, we present TWIMExtract, a data extraction tool to export defined slices of liquid chromatography/ion mobility/mass spectrometry (LC-IM-MS) data, providing a route to quantify ion mobility resolution from a commercial traveling-wave ion mobility time-of-flight mass spectrometer. Using standard traveling-wave ion mobility parameters (600 m/s, 40 V), 90% of the annotated peptides occupied just 23% of the ion mobility drift space, yet inclusion of ion mobility nearly doubled the overall peak capacity. Relative to fixed velocity traveling-wave ion mobility settings, ramping the traveling-wave velocity increased drift space occupancy, amplifying resolution by 16%, peak capacity by nearly 50%, and peptide/protein identifications by 40%. Overall, variable-velocity traveling-wave ion mobility-mass spectrometry significantly enhances proteomics analysis in all-ion fragmentation acquisition.


ACS Medicinal Chemistry Letters | 2017

Affinity-Based Selectivity Profiling of an In-Class Selective Competitive Inhibitor of Acyl Protein Thioesterase 2

Sang Joon Won; Joseph D. Eschweiler; Jaimeen D. Majmudar; Fei San Chong; Sin Ye Hwang; Brandon T. Ruotolo; Brent R. Martin

Activity-based protein profiling (ABPP) has revolutionized the discovery and optimization of active-site ligands across distinct enzyme families, providing a robust platform for in-class selectivity profiling. Nonetheless, this approach is less straightforward for profiling reversible inhibitors and does not access proteins outside the ABPP probes target profile. While the active-site competitive acyl protein thioesterase 2 inhibitor ML349 (Ki = 120 nM) is highly selective within the serine hydrolase enzyme family, it could still interact with other cellular targets. Here we present a chemoproteomic workflow to enrich and profile candidate ML349-binding proteins. In human cell lysates, biotinylated-ML349 enriches a recurring set of proteins, including metabolite kinases and flavin-dependent oxidoreductases that are potentially enhanced by avidity-driven multimeric interactions. Confirmatory assays by native mass spectrometry and fluorescence polarization quickly rank-ordered these weak off-targets, providing justification to explore ligand interactions and stoichiometry beyond ABPP.


Analytical Chemistry | 2018

DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics

Sarah E. Haynes; Jaimeen D. Majmudar; Brent R. Martin

Quantitative mass spectrometry-based protein profiling is widely used to measure protein levels across different treatments or disease states, yet current mass spectrometry acquisition methods present distinct limitations. While data-independent acquisition (DIA) bypasses the stochastic nature of data-dependent acquisition (DDA), fragment spectra derived from DIA are often complex and challenging to deconvolve. In-line ion mobility separation (IMS) adds an additional dimension to increase peak capacity for more efficient product ion assignment. As a similar strategy to sequential window acquisition methods (SWATH), IMS-enabled DIA methods rival DDA methods for protein annotation. Here we evaluate IMS-DIA quantitative accuracy using stable isotope labeling by amino acids in cell culture (SILAC). Since SILAC analysis doubles the sample complexity, we find that IMS-DIA analysis is not sufficiently accurate for sensitive quantitation. However, SILAC precursor pairs share common retention and drift times, and both species cofragment to yield multiple quantifiable isotopic y-ion peak pairs. Since y-ion SILAC ratios are intrinsic for each quantified precursor, combined MS1 and y-ion ratio analysis significantly increases the total number of measurements. With increased sampling, we present DIA-SIFT ( SILAC Intrinsic Filtering Tool), a simple statistical algorithm to identify and eliminate poorly quantified MS1 and/or MS2 events. DIA-SIFT combines both MS1 and y-ion ratios, removes outliers, and provides more accurate and precise quantitation (<15% CV) without removing any proteins from the final analysis. Overall, pooled MS1 and MS2 quantitation increases sampling in IMS-DIA SILAC analyses for accurate and precise quantitation.

Collaboration


Dive into the Jaimeen D. Majmudar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge