Jake D. Soper
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jake D. Soper.
Journal of the American Chemical Society | 2010
Aubrey L. Smith; Kenneth I. Hardcastle; Jake D. Soper
Square planar cobalt(III) complexes with redox-active amidophenolate ligands are strong nucleophiles that react with alkyl halides, including CH(2)Cl(2), under gentle conditions to generate stable square pyramidal alkylcobalt(III) complexes. The net electrophilic addition reactions formally require 2e(-) oxidation of the metal fragment, but there is no change in metal oxidation state because the reaction proceeds with 1e(-) oxidation of each amidophenolate ligand. Although the four-coordinate complexes are very strong nucleophiles, they are mild outer-sphere reductants. Accordingly, addition of alkyl- or phenylzinc halides to the five-coordinate organometallic complexes regenerates the square planar starting materials and extrudes C-C coupling products. The net 2e(-) reductive elimination reaction also occurs without a oxidation state change at the cobalt(III) center. Together these reactions comprise a complete, well-defined cycle for cobalt Negishi-like cross-coupling of alkyl halides with organozinc reagents.
Journal of the American Chemical Society | 2010
Cameron A. Lippert; Stephen A. Arnstein; C. David Sherrill; Jake D. Soper
Five-coordinate oxorhenium(V) anions with redox-active catecholate and amidophenolate ligands are shown to effect clean bimetallic cleavage of O(2) to give dioxorhenium(VII) products. A structural homologue with redox-inert oxalate ligands does not react with O(2). Redox-active ligands lower the kinetic barrier to bimetallic O(2) homolysis at five-coordinate oxorhenium(V) by facilitating formation and stabilization of intermediate O(2) adducts. O(2) activation occurs by two sequential Re-O bond forming reactions, which generate mononuclear eta(1)-superoxo species, and then binuclear trans-mu-1,2-peroxo-bridged complexes. Formation of both Re-O bonds requires trapping of a triplet radical dioxygen species by a cis-[Re(V)(O)(cat)(2)](-) anion. In each reaction the dioxygen fragment is reduced by 1e(-), so generation of each new Re-O bond requires that an oxometal fragment is oxidized by 1e(-). Complexes containing a redox-active ligand access a lower energy reaction pathway for the 1e(-) Re-O bond forming reaction because the metal fragment can be oxidized without a change in formal rhenium oxidation state. It is also likely that redox-active ligands facilitate O(2) homolysis by lowering the barrier to the formally spin-forbidden reactions of triplet dioxygen with the closed shell oxorhenium(V) anions. By orthogonalizing 1e(-) and 2e(-) redox at oxorhenium(V), the redox-active ligand allows high-valent rhenium to utilize a mechanism for O(2) activation that is atypical of oxorhenium(V) but more typical for oxygenase enzymes and models based on 3d transition metal ions: O(2) cleavage occurs by a net 2e(-) process through a series of 1e(-) steps. The implications for design of new multielectron catalysts for oxygenase-type O(2) activation, as well as the microscopic reverse reaction, O-O bond formation from coupling of two M=O fragments for catalytic water oxidation, are discussed.
Inorganic Chemistry | 2008
Clarence J. Rolle; Kenneth I. Hardcastle; Jake D. Soper
New five- and six-coordinate complexes containing the [Mn(III)(Br4cat)2](-) core (Br4cat(2-) = tetrabromo-1,2-catecholate) have been prepared. Homoleptic [Mn(III)(Br4cat)3](3-) reacts rapidly with O2 to produce tetrabromo-1,2-benzoquinone (Br4bq). The [Mn(III)(Br4cat)2](-) fragment is a robust catalytic platform for the aerobic conversion of catechols to quinones. The oxidase activity apparently derives from the coupling of metal- and ligand-centered redox events.
Inorganic Chemistry | 2010
Cameron A. Lippert; Jake D. Soper
Five-coordinate oxorhenium(V) anions with redox-active catecholate ligands deoxygenate stable nitroxyl radicals, including TEMPO(*), to afford dioxorhenium(VII) complexes and aminyl radical-derived products. A structural homologue with redox-inert oxalate ligands does not react with TEMPO(*). Redox-active ligands are proposed to lower the kinetic barrier to TEMPO(*) deoxygenation by giving access to 1e(-) redox steps that are crucial for the formation and stabilization of intermediate species.
Inorganic Chemistry | 2011
Cameron A. Lippert; Kenneth I. Hardcastle; Jake D. Soper
The addition of an [X](+) electrophile to the five-coordinate oxorhenium(V) anion [Re(V)(O)(ap(Ph))(2)](-) {[ap(Ph)](2-) = 2,4-di-tert-butyl-6-(phenylamido)phenolate} gives new products containing Re-X bonds. The Re-X bond-forming reaction is analogous to oxo transfer to [Re(V)(O)(ap(Ph))(2)](-) in that both are 2e(-) redox processes, but the electronic structures of the products are different. Whereas oxo addition to [Re(V)(O)(ap(Ph))(2)](-) yields a closed-shell [Re(VII)(O)(2)(ap(Ph))(2)](-) product of 2e(-) metal oxidation, [Cl](+) addition gives a diradical Re(VI)(O)(ap(Ph))(isq(Ph))Cl product ([isq(Ph)](•-) = 2,4-di-tert-butyl-6-(phenylimino)semiquinonate) with 1e(-) in a Re d orbital and 1e(-) on a redox-active ligand. The differences in electronic structure are ascribed to differences in the π basicity of [O](2-) and Cl(-) ligands. The observation of ligand radicals in Re(VI)(O)(ap(Ph))(isq(Ph))X provides experimental support for the capacity of redox-active ligands to deliver electrons in other bond-forming reactions at [Re(V)(O)(ap(Ph))(2)](-), including radical additions of O(2) or TEMPO(•) to make Re-O bonds. Attempts to prepare the electron-transfer series monomers between Re(VI)(O)(ap(Ph))(isq(Ph))X and [Re(V)(O)(ap(Ph))(2)](-) yielded a symmetric bis(μ-oxo)dirhenium complex. Formation of this dimer suggested that Re(VI)(O)(ap(Ph))(isq(Ph))Cl may be a source of an oxyl metal fragment. The ability of Re(VI)(O)(ap(Ph))(isq(Ph))Cl to undergo radical coupling at oxo was revealed in its reaction with Ph(3)C(•), which affords Ph(3)COH and deoxygenated metal products. This reactivity is surprising because Re(VI)(O)(ap(Ph))(isq(Ph))Cl is not a strong outer-sphere oxidant or oxo-transfer reagent. We postulate that the unique ability of Re(VI)(O)(ap(Ph))(isq(Ph))Cl to effect oxo transfer to Ph(3)C(•) arises from symmetry-allowed mixing of a populated Re≡O π bond with a ligand-centered [isq(Ph)](•-) ligand radical, which gives oxyl radical character to the oxo ligand. This allows the closed-shell oxo ligand to undergo a net 2e(-) oxo-transfer reaction to Ph(3)C(•) via kinetically facile redox-active ligand-mediated radical steps. Harnessing intraligand charge transfer for radical reactions at closed-shell oxo ligands is a new strategy to exploit redox-active ligands for small-molecule activation and functionalization. The implications for the design of new oxidants that utilize low-barrier radical steps for selective multielectron transformations are discussed.
Inorganic Chemistry | 2017
Caleb F. Harris; Michael B. Bayless; Nicolaas P. van Leest; Quinton J. Bruch; Brooke N. Livesay; John Bacsa; Kenneth I. Hardcastle; Matthew P. Shores; Bas de Bruin; Jake D. Soper
A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO]2- dianions, of the general formula [(OCO)CoIIL] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)CoIIL] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc+/Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [(SOCO)CoIII(THF)2]+ containing a closed-shell [SOCO]2- diphenolate ligand bound to a S = 1 Co(III) center, or [(SOCO•)CoII(THF)2]+ with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [SOCO•]- containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [(SOCO0)CoII(THF)3]2+, with a single unpaired electron localized on the d7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell SOCO0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.
Journal of the American Chemical Society | 2001
Thomas J. Crevier; Brian K. Bennett; Jake D. Soper; Julie A. Bowman; Ahmad Dehestani; David A. Hrovat; Scott Lovell; Werner Kaminsky; James M. Mayer
Journal of the American Chemical Society | 2007
Jake D. Soper; Sergey V. Kryatov; Elena V. Rybak-Akimova; Daniel G. Nocera
Inorganic Chemistry | 2006
Shih-Yuan Liu; Jake D. Soper; Jenny Y. Yang; Elena V. Rybak-Akimova; Daniel G. Nocera
Journal of the American Chemical Society | 2003
Jake D. Soper; James M. Mayer