Jake Iles-Smith
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jake Iles-Smith.
Journal of Chemical Physics | 2016
Jake Iles-Smith; Arend G. Dijkstra; Neill Lambert; Ahsan Nazir
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.
Physical Review A | 2014
Jake Iles-Smith; Neill Lambert; Ahsan Nazir
Quantum systems are invariably open, evolving under surrounding influences rather than in isolation. Standard open quantum system methods eliminate all information on the environmental state to yield a tractable description of the system dynamics. By incorporating a collective coordinate of the environment into the system Hamiltonian, we circumvent this limitation. Our theory provides straightforward access to important environmental properties that would otherwise be obscured, allowing us to quantify the evolving system-environment correlations. As a direct result, we show that the generation of robust system-environment correlations that persist into equilibrium (heralded also by the emergence of non-Gaussian environmental states) renders the canonical system steady state almost always incorrect. The resulting equilibrium states deviate markedly from those predicted by standard perturbative techniques and are instead fully characterized by thermal states of the mapped system-collective coordinate Hamiltonian. We outline how noncanonical system states could be investigated experimentally to study deviations from canonical thermodynamics, with direct relevance to molecular and solid-state nanosystems.
Nature Photonics | 2017
Jake Iles-Smith; Dara P. S. McCutcheon; Ahsan Nazir; Jesper Mørk
Semiconductor quantum dots have recently emerged as a leading platform to efficiently generate highly indistinguishable photons [1-3], and this work addresses the timely question of how good these solid-state sources can ultimately be. Based on a microscopic theory, we establish the crucial impact that lattice relaxation has in these systems, which gives rise to a broad phonon sideband in bulk quantum dot emission spectra, as seen in Fig. (1) a. We show how both the indistinguishability and efficiency of a single photon source based on such a quantum dot in a modified photonic environment depends on the way in which this incoherent sideband is removed from the spectra [4].
Physical Review B | 2017
Jake Iles-Smith; Dara P. S. McCutcheon; Jesper Mørk; Ahsan Nazir
The desire to produce high-quality single photons for applications in quantum information science has lead to renewed interest in exploring solid-state emitters in the weak excitation regime. Under these conditions it is expected that photons are coherently scattered, and so benefit from a substantial suppression of detrimental interactions between the source and its surrounding environment. Nevertheless, we demonstrate here that this reasoning is incomplete, as phonon interactions continue to play a crucial role in determining solid-state emission characteristics even for very weak excitation. We find that the sideband resulting from non-Markovian relaxation of the phonon environment is excitation strength independent. It thus leads to an intrinsic limit to the fraction of coherently scattered light and to the visibility of two-photon coalescence at weak driving, both of which are absent for atomic systems or within simpler Markovian treatments.
arXiv: Mesoscale and Nanoscale Physics | 2016
Jake Iles-Smith; Ahsan Nazir
One aspect of solid-state photonic devices that distinguishes them from their atomic counterparts is the unavoidable interaction between system excitations and lattice vibrations of the host material. This coupling may lead to surprising departures in emission properties between solid-state and atomic systems. Here we predict a striking and important example of such an effect. We show that in solid-state cavity quantum electrodynamics, interactions with the host vibrational environment can generate quantum cavity–emitter correlations in regimes that are semiclassical for atomic systems. This behavior, which can be probed experimentally through the cavity emission properties, heralds a failure of the semiclassical approach in the solid state, and challenges the notion that coupling to a thermal bath supports a more classical description of the system. Furthermore, it does not rely on the spectral details of the host environment under consideration and is robust to changes in temperature. It should thus be of relevance to a wide variety of photonic devices.
Physical Review A | 2017
Emil V. Denning; Jake Iles-Smith; Dara P. S. McCutcheon; Jesper Mørk
Multi-photon entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin
european quantum electronics conference | 2017
Dara P. S. McCutcheon; Jake Iles-Smith; Ahsan Nazir; Jesper Mørk
T_2^*
Physical Review Letters | 2017
Antoine Reigue; Jake Iles-Smith; Fabian Lux; Léonard Monniello; Mathieu Bernard; Florent Margaillan; Aristide Lemaître; Anthony Martinez; Dara P. S. McCutcheon; Jesper Mørk; Richard Hostein; Valia Voliotis
time of a few nanoseconds. We propose a protocol for the deterministic generation of multi-photon entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin
Bulletin of the American Physical Society | 2015
Jake Iles-Smith; Ahsan Nazir
T_2
Physical Review B | 2018
Stefan Gerhardt; Jake Iles-Smith; Dara P. S. McCutcheon; Yu-Ming He; Sebastian Unsleber; Simon Betzold; Niels Gregersen; Jesper Mørk; Sven Höfling; Christian Schneider
time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.