Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jake J. Beaulieu is active.

Publication


Featured researches published by Jake J. Beaulieu.


Nature | 2008

Stream denitrification across biomes and its response to anthropogenic nitrate loading

Patrick J. Mulholland; Ashley M. Helton; Geoffrey C. Poole; Robert O. Hall; Stephen K. Hamilton; Bruce J. Peterson; Jennifer L. Tank; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Walter K. Dodds; Stuart E. G. Findlay; Stanley V. Gregory; Nancy B. Grimm; Sherri L. Johnson; William H. McDowell; Judy L. Meyer; H. Maurice Valett; Jackson R. Webster; Clay P. Arango; Jake J. Beaulieu; Melody J. Bernot; Amy J. Burgin; Chelsea L. Crenshaw; Laura T. Johnson; B. R. Niederlehner; Jonathan M. O'Brien; Jody D. Potter; Richard W. Sheibley; Daniel J. Sobota

Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20–25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Nitrous oxide emission from denitrification in stream and river networks

Jake J. Beaulieu; Jennifer L. Tank; Stephen K. Hamilton; Wilfred M. Wollheim; Robert O. Hall; Patrick J. Mulholland; Bruce J. Peterson; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Walter K. Dodds; Nancy B. Grimm; Sherri L. Johnson; William H. McDowell; Geoffrey C. Poole; H. Maurice Valett; Clay P. Arango; Melody J. Bernot; Amy J. Burgin; Chelsea L. Crenshaw; Ashley M. Helton; Laura T. Johnson; Jonathan M. O'Brien; Jody D. Potter; Richard W. Sheibley; Daniel J. Sobota; Suzanne M. Thomas

Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.


Ecological Applications | 2012

Floodplain restoration enhances denitrification and reach‐scale nitrogen removal in an agricultural stream

Sarah S. Roley; Jennifer L. Tank; Mia L. Stephen; Laura T. Johnson; Jake J. Beaulieu; Jonathan D. Witter

Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditchs effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.


Environmental Science & Technology | 2010

Nitrous Oxide Emissions from a Large, Impounded River: The Ohio River

Jake J. Beaulieu; William D. Shuster; J. A. Rebholz

Models suggest that microbial activity in streams and rivers is a globally significant source of anthropogenic nitrous oxide (N(2)O), a potent greenhouse gas, and the leading cause of stratospheric ozone destruction. However, model estimates of N(2)O emissions are poorly constrained due to a lack of direct measurements of microbial N(2)O production and consequent emissions, particularly from large rivers. We report the first N(2)O budget for a large, nitrogen enriched river, based on direct measurements of N(2)O emissions from the water surface and N(2)O production in the sediments and water column. Maximum N(2)O emissions occurred downstream from Cincinnati, Ohio, a major urban center on the river, due to direct inputs of N(2)O from wastewater treatment plant effluent and higher rates of in situ production. Microbial activity in the water column and sediments was a source of N(2)O, and water column production rates were nearly double those of the sediments. Emissions exhibited strong seasonality with the highest rates observed during the summer and lowest during the winter. Our results indicate N(2)O dynamics in large temperate rivers may be characterized by strong seasonal cycles and production in the pelagic zone.


Journal of The North American Benthological Society | 2006

Effects of light on NO3− uptake in small forested streams: diurnal and day-to-day variations

Patrick J. Mulholland; Steven A. Thomas; H. Maurice Valett; Jackson R. Webster; Jake J. Beaulieu

Abstract We investigated the effects of autotrophy on short-term variations in nutrient dynamics by measuring diurnal and day-to-day variations in light level, primary productivity, and NO3− uptake during early and late spring in 2 forested streams, the East and West Forks of Walker Branch in eastern Tennessee, USA. We predicted that diurnal and day-to-day variations in NO3− uptake rate would be larger in the West Fork than in the East Fork in early spring because of higher rates of primary productivity resulting from a more stable substratum in the West Fork. We also predicted minimal diurnal variations in both streams in late spring after forest leaf emergence when light levels and primary productivity are uniformly low. Reach-scale rates of gross primary production (GPP) were determined using the diurnal dissolved O2 change technique, and reach-scale rates of NO3− uptake were determined by tracer 15N-NO3− additions. In the West Fork, significant diurnal and day-to-day variations in NO3− uptake were related to variations in light level and primary productivity in early spring but not in late spring, consistent with our predictions. In early spring, West Fork NO3− uptake rates were 2 to 3× higher at midday than during predawn hours and 50% higher on 2 clear days than on an overcast day several days earlier. In the East Fork, early spring rates of GPP were 4 to 5× lower than in the West Fork and diurnal and day-to-day variations in NO3− uptake rates were <30%, considerably lower than in the West Fork. However, diurnal variations in NO3− uptake rates were greater in late spring in the East Fork, possibly because of diurnal variation in water temperature. Our results indicate the important role of autotrophs in nutrient uptake in some forested streams, particularly during seasons when forest vegetation is dormant and light levels are relatively high. Our results also have important implications for longer-term assessments of N cycling in streams that rely on daytime measurements or measurements only under limited weather conditions (i.e., clear days).


Journal of Geophysical Research | 2012

Controls on gas transfer velocities in a large river

Jake J. Beaulieu; William D. Shuster; Jacob A. Rebholz

The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estimate the gas transfer velocity (k) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in the Markland Pool of the Ohio River, a large tributary of the Mississippi River (U.S.A). We measured k every two weeks for a year at one site and at 15 additional sites distributed across the length of the pool during two summer surveys. We found that k was positively related to both water currents and wind speeds, with 46% of the gas transfer attributable to water currents at low wind speeds (e.g., 0.5 m s−1) and 11% at higher wind speeds (e.g., >2.0 m s−1). Gas transfer velocity was highly sensitive to wind, possibly because the direction of river flow was often directly opposed to the wind direction. Gas transfer velocity values derived for CH4 were consistently greater than those derived for CO2 when standardized to a Schmidt number of 600 (k600), possibly because the transfer of CH4, a poorly soluble gas, was enhanced by surfacing microbubbles. Additional research to determine the conditions that support microbubble enhanced gas transfer is merited.


Freshwater Science | 2013

Estimating autotrophic respiration in streams using daily metabolism data

Robert O. Hall; Jake J. Beaulieu

Abstract. The fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is unknown. This value is necessary to calculate the autotrophic base of food webs, which requires knowing production available for grazers. ARf is also necessary for estimating heterotrophic respiration (HR) which is needed to calculate C spiraling in streams and rivers. We suggest a way to estimate ARf from daily metabolism data using quantile regression between GPP and 90% quantile of ecosystem respiration (ER). We reasoned that autotrophic respiration represents the lower limit for ER on any one day and used quantile regression to estimate the relationship of the lower quantile of ER with respect to GPP. We examined this approach with simulation modeling and application of quantile regression to estimates of continuous GPP and ER from >20 streams. Simulation modeling showed that low-uncertainty estimates of ARf required large variation in daily GPP. Covariance between HR and GPP, which might be observed if the processes were temperature controlled, biased estimates of ARf. Seasonal estimates of ARf were robust to daily variation in ARf as a function of GPP. ARf calculated from previously published estimates of daily metabolism from streams averaged 0.44 (SD  =  0.19) with high variation among streams. This value is higher than most physiological measurements, probably because of light limitation of algae and from HR closely associated with daily GPP. How much of ARf was from algal respiration vs closely associated heterotrophic respiration is not known, but we suggest that the value (1 – ARf)GPP represents the amount of C available to animals.


Journal of Environmental Quality | 2009

The Effects of Season and Agriculture on Nitrous Oxide Production in Headwater Streams

Jake J. Beaulieu; Clay P. Arango; Jennifer L. Tank

Streams and rivers are a globally significant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, there remains much uncertainty in the magnitude of N(2)O emissions from these sources, partly due to an incomplete understanding of the factors that control microbial N(2)O production in lotic sediments. During 2004-2005 we measured sediment N(2)O production in 12 headwater streams across an agricultural land use gradient. Stream water nitrate (NO(3)(-)) concentrations were positively related to the proportion of agricultural land use in the basin and frequently exceeded 20 mg N L(-1) in the stream draining the most agricultural basin. Stream sediments were nearly always a net source of N(2)O, and production rates were positively related to stream water NO(3)(-) concentrations and sediment carbon content. There were no seasonal patterns in N(2)O production rates during 2004, but stream water NO(3)(-) and N(2)O production both peaked during the winter of 2005. The spike in NO(3)(-) concentrations likely resulted from winter rain and snowmelt that flushed NO(3)(-) from the soils following a dry summer and fall. In turn, the elevated stream water NO(3)(-) concentrations stimulated in-stream N(2)O production rates. Overall, we were only able to explain 29% of the variation in N(2)O production rates on a log scale. The unexplained variation may be due to differences in the fraction of denitrified NO(3)(-) that is converted to N(2)O among the study sites, or that our measures of substrate availability in the water column were not reflective of substrate availability in the porewater used by denitrifiers.


PLOS ONE | 2014

How Much Is Enough? Minimal Responses of Water Quality and Stream Biota to Partial Retrofit Stormwater Management in a Suburban Neighborhood

Allison H. Roy; Lee K. Rhea; Audrey L. Mayer; William D. Shuster; Jake J. Beaulieu; Matthew E. Hopton; Matthew A. Morrison; Ann St. Amand

Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.


Environmental Science & Technology | 2014

High Methane Emissions from a Midlatitude Reservoir Draining an Agricultural Watershed

Jake J. Beaulieu; Rebecca L. Smolenski; Christopher T. Nietch; Amy Townsend-Small; Michael S. Elovitz

Reservoirs are a globally significant source of methane (CH4), although most measurements have been made in tropical and boreal systems draining undeveloped watersheds. To assess the magnitude of CH4 emissions from reservoirs in midlatitude agricultural regions, we measured CH4 and carbon dioxide (CO2) emission rates from William H. Harsha Lake (Ohio, U.S.A.), an agricultural impacted reservoir, over a 13 month period. The reservoir was a strong source of CH4 throughout the year, emitting on average 176 ± 36 mg C m(-2) d(-1), the highest reservoir CH4 emissions profile documented in the United States to date. Contrary to our initial hypothesis, the largest CH4 emissions were during summer stratified conditions, not during fall turnover. The river-reservoir transition zone emitted CH4 at rates an order of magnitude higher than the rest of the reservoir, and total carbon emissions (i.e., CH4 + CO2) were also greater at the transition zone, indicating that the river delta supported greater carbon mineralization rates than elsewhere. Midlatitude agricultural impacted reservoirs may be a larger source of CH4 to the atmosphere than currently recognized, particularly if river deltas are consistent CH4 hot spots. We estimate that CH4 emissions from agricultural reservoirs could be a significant component of anthropogenic CH4 emissions in the U.S.A.

Collaboration


Dive into the Jake J. Beaulieu's collaboration.

Top Co-Authors

Avatar

Clay P. Arango

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Mulholland

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge