Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jake Shortt is active.

Publication


Featured researches published by Jake Shortt.


Blood | 2012

Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy

Marta Chesi; Geoffrey M. Matthews; Victoria Garbitt; Stephen Palmer; Jake Shortt; Marcus Lefebure; A. Keith Stewart; Ricky W. Johnstone; P. Leif Bergsagel

The attrition rate for anticancer drugs entering clinical trials is unacceptably high. For multiple myeloma (MM), we postulate that this is because of preclinical models that overemphasize the antiproliferative activity of drugs, and clinical trials performed in refractory end-stage patients. We validate the Vk*MYC transgenic mouse as a faithful model to predict single-agent drug activity in MM with a positive predictive value of 67% (4 of 6) for clinical activity, and a negative predictive value of 86% (6 of 7) for clinical inactivity. We identify 4 novel agents that should be prioritized for evaluation in clinical trials. Transplantation of Vk*MYC tumor cells into congenic mice selected for a more aggressive disease that models end-stage drug-resistant MM and responds only to combinations of drugs with single-agent activity in untreated Vk*MYC MM. We predict that combinations of standard agents, histone deacetylase inhibitors, bromodomain inhibitors, and hypoxia-activated prodrugs will demonstrate efficacy in the treatment of relapsed MM.


Cancer Research | 2013

An Intact Immune System Is Required for the Anticancer Activities of Histone Deacetylase Inhibitors

Alison C. West; Stephen R. Mattarollo; Jake Shortt; Leonie A. Cluse; Ailsa J. Christiansen; Mark J. Smyth; Ricky W. Johnstone

Cell-intrinsic effects such as induction of apoptosis and/or inhibition of cell proliferation have been proposed as the major antitumor responses to histone deacetylase inhibitors (HDACi). These compounds can also mediate immune-modulatory effects that may contribute to their anticancer effects. However, HDACi can also induce anti-inflammatory, and potentially immunosuppressive, outcomes. We therefore sought to clarify the role of the immune system in mediating the efficacy of HDACi in a physiologic setting, using preclinical, syngeneic murine models of hematologic malignancies and solid tumors. We showed an intact immune system was required for the robust anticancer effects of the HDACi vorinostat and panobinostat against a colon adenocarcinoma and two aggressive models of leukemia/lymphoma. Importantly, although HDACi-treated immunocompromised mice bearing established lymphoma succumbed to disease significantly earlier than tumor bearing, HDACi-treated wild-type (WT) mice, treatment with the conventional chemotherapeutic etoposide equivalently enhanced the survival of both strains. IFN-γ and tumor cell signaling through IFN-γR were particularly important for the anticancer effects of HDACi, and vorinostat and IFN-γ acted in concert to enhance the immunogenicity of tumor cells. Furthermore, we show that a combination of vorinostat with α-galactosylceramide (α-GalCer), an IFN-γ-inducing agent, was significantly more potent against established lymphoma than vorinostat treatment alone. Intriguingly, B cells, but not natural killer cells or CD8(+) T cells, were implicated as effectors of the vorinostat antitumor immune response. Together, our data suggest HDACi are immunostimulatory during cancer treatment and that combinatorial therapeutic regimes with immunotherapies should be considered in the clinic.


The New England Journal of Medicine | 2013

ADAMTS13 antibody depletion by bortezomib in thrombotic thrombocytopenic purpura.

Jake Shortt; Danielle H. Oh; Stephen Opat

In some patients with refractory thrombotic thrombocytopenic purpura (TTP), efforts to reduce the causative antibody to ADAMTS13 by depleting B cells with rituximab are often effective. In a patient in whom such therapy failed, bortezomib was effective.


Blood | 2014

Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors

Michael Bots; Inge Verbrugge; Benjamin P. Martin; Jessica M. Salmon; Margherita Ghisi; Adele Baker; Kym Stanley; Jake Shortt; Gert J. Ossenkoppele; Johannes Zuber; Amy R. Rappaport; Peter Atadja; Scott W. Lowe; Ricky W. Johnstone

Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML patients, rigorous preclinical studies to identify the molecular and biological events that may determine therapeutic responses have not been performed. Using an AML mouse model driven by expression of AML1/ETO9a (A/E9a), we demonstrated that treatment of mice bearing t(8;21) AML with the HDACi panobinostat caused a robust antileukemic response that did not require functional p53 nor activation of conventional apoptotic pathways. Panobinostat triggered terminal myeloid differentiation via proteasomal degradation of A/E9a. Importantly, conditional A/E9a deletion phenocopied the effects of panobinostat and other HDACis, indicating that destabilization of A/E9a is critical for the antileukemic activity of these agents.


Oncogene | 2013

Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy

Jake Shortt; Andy K. Hsu; Ricky W. Johnstone

Thalidomide and its analogues (lenalidomide and pomalidomide) are small molecule glutamic acid derivatives of the immunomodulatory drug (IMiD) class. In addition to the immuno-adjuvant and anti-inflammatory properties that define an IMiD, the thalidomide analogues demonstrate an overlapping and diverse range of biological activities, including anti-angiogenic, teratogenic and epigenetic effects. Importantly, the IMiDs possess anti-cancer activity with selectivity for molecularly defined subgroups of hematological malignancies, specifically mature B-cell neoplasms and myelodysplasia with deletion of chromosome 5q. Emerging insight into the pathophysiological drivers of these IMiD-responsive disease states can now be synthesized using previously disclosed IMiD activities and recently discovered thalidomide targets to build unifying models of IMiD mechanism of action. Attention to mechanisms of IMiD-induced clinical toxicities, in particular the recently identified association of lenalidomide with second primary malignancies, provides an additional tool for determination of drug mechanism. This review seeks to define the molecular IMiD targets and biological outputs that underpin their anti-neoplastic activity. It is anticipated that elucidation of important IMiD targets will allow the rational development of new-generation therapeutics with the potential to separate thalidomide-analogue efficacy from clinical toxicity.


Blood | 2013

Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas.

Jake Shortt; Benjamin P. Martin; Andrea Newbold; Katherine M. Hannan; Jennifer R. Devlin; Adele Baker; Rachael Ralli; Carleen Cullinane; Clemens A. Schmitt; Maurice Reimann; Michael N. Hall; Meaghan Wall; Ross D. Hannan; Richard B. Pearson; Grant A. McArthur; Ricky W. Johnstone

Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR.


Blood | 2012

NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma.

Stephen R. Mattarollo; Alison C. West; Kim Steegh; Helene Duret; Christophe Paget; Ben P. Martin; Geoffrey M. Matthews; Jake Shortt; Marta Chesi; P. Leif Bergsagel; Michael Bots; Johannes Zuber; Scott W. Lowe; Ricky W. Johnstone; Mark J. Smyth

Immunomodulators are effective in controlling hematologic malignancy by initiating or reactivating host antitumor immunity to otherwise poorly immunogenic and immune suppressive cancers. We aimed to boost antitumor immunity in B-cell lymphoma by developing a tumor cell vaccine incorporating α-galactosylceramide (α-GalCer) that targets the immune adjuvant properties of NKT cells. In the Eμ-myc transgenic mouse model, single therapeutic vaccination of irradiated, α-GalCer-loaded autologous tumor cells was sufficient to significantly inhibit growth of established tumors and prolong survival. Vaccine-induced antilymphoma immunity required NKT cells, NK cells, and CD8 T cells, and early IL-12-dependent production of IFN-γ. CD4 T cells, gamma/delta T cells, and IL-18 were not critical. Vaccine treatment induced a large systemic spike of IFN-γ and transient peripheral expansion of both NKT cells and NK cells, the major sources of IFN-γ. Furthermore, this vaccine approach was assessed in several other hematopoietic tumor models and was also therapeutically effective against AML-ETO9a acute myeloid leukemia. Replacing α-GalCer with β-mannosylceramide resulted in prolonged protection against Eμ-myc lymphoma. Overall, our results demonstrate a potent immune adjuvant effect of NKT cell ligands in therapeutic anticancer vaccination against oncogene-driven lymphomas, and this work supports clinical investigation of NKT cell-based immunotherapy in patients with hematologic malignancies.


Bone Marrow Transplantation | 2006

Adjuvant rituximab causes prolonged hypogammaglobulinaemia following autologous stem cell transplant for non-Hodgkin's lymphoma

Jake Shortt; Andrew Spencer

Rituximab is an anti-CD20 monoclonal antibody that has efficacy in B-cell non-Hodgkins lymphoma (NHL). Adjuvant immunotherapy with rituximab may reduce relapse rates for high-risk B-cell NHL following high-dose chemotherapy with autologous stem cell transplantation (SCT). However, the potential adverse effects of rituximab on immune reconstitution following SCT are not fully characterized. We performed a retrospective analysis of immunoglobulin (Ig) levels and peripheral blood neutrophil counts in 11 patients who received adjuvant rituximab following autologous SCT for B-cell NHL. Results were compared to a contemporaneous group of 24 patients who received an identical conditioning regimen and autologous SCT for lymphoma, but no adjuvant rituximab. Adjuvant rituximab was associated with a significantly increased incidence of hypogammaglobulinaemia between 12 and 24 months post-SCT, but not neutropenia. Despite suppression of Igs, there were no late or atypical infective complications attributable to rituximab.


Cancer Discovery | 2013

The mTORC1 Inhibitor Everolimus Prevents and Treats Eμ-Myc Lymphoma by Restoring Oncogene-Induced Senescence

Meaghan Wall; Gretchen Poortinga; Kym Stanley; Ralph K. Lindemann; Michael Bots; Christopher J. Chan; Megan J. Bywater; Kathryn M. Kinross; Megan Victoria Astle; Kelly Waldeck; Katherine M. Hannan; Jake Shortt; Mark J. Smyth; Scott W. Lowe; Ross D. Hannan; Richard B. Pearson; Ricky W. Johnstone; Grant A. McArthur

UNLABELLED MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in Eμ-Myc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTOR complex 1 (mTORC1) signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of Eμ-Myc lymphoma. Everolimus selectively cleared premalignant B cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation, and strongly protected against lymphoma development. Established Eμ-Myc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore, mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B lymphocytes. SIGNIFICANCE This work provides novel insights into the requirements for MYC-induced oncogenesis by showing that mTORC1 activity is necessary to bypass senescence during transformation of B lymphocytes. Furthermore, tumor eradication through senescence elicited by targeted inhibition of mTORC1 identifies a previously uncharacterized mechanism responsible for significant anticancer activity of rapamycin analogues and serves as proof-of-concept that senescence can be harnessed for therapeutic benefit


Cancer Discovery | 2016

Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma

Jennifer R. Devlin; Katherine M. Hannan; Nadine Hein; Carleen Cullinane; Eric Kusnadi; Pui Yee Ng; Amee J. George; Jake Shortt; Megan J. Bywater; Gretchen Poortinga; Elaine Sanij; Jian Kang; Denis Drygin; Sean O'Brien; Ricky W. Johnstone; Grant A. McArthur; Ross D. Hannan; Richard B. Pearson

UNLABELLED Ribosome biogenesis and protein synthesis are dysregulated in many cancers, with those driven by the proto-oncogene c-MYC characterized by elevated Pol I-mediated ribosomal rDNA transcription and mTORC1/eIF4E-driven mRNA translation. Here, we demonstrate that coordinated targeting of rDNA transcription and PI3K-AKT-mTORC1-dependent ribosome biogenesis and protein synthesis provides a remarkable improvement in survival in MYC-driven B lymphoma. Combining an inhibitor of rDNA transcription (CX-5461) with the mTORC1 inhibitor everolimus more than doubled survival of Eμ-Myc lymphoma-bearing mice. The ability of each agent to trigger tumor cell death via independent pathways was central to their synergistic efficacy. CX-5461 induced nucleolar stress and p53 pathway activation, whereas everolimus induced expression of the proapoptotic protein BMF that was independent of p53 and reduced expression of RPL11 and RPL5. Thus, targeting the network controlling the synthesis and function of ribosomes at multiple points provides a potential new strategy to treat MYC-driven malignancies. SIGNIFICANCE Treatment options for the high proportion of cancers driven by MYC are limited. We demonstrate that combining pharmacologic targeting of ribosome biogenesis and mTORC1-dependent translation provides a remarkable therapeutic benefit to Eμ-Myc lymphoma-bearing mice. These results establish a rationale for targeting ribosome biogenesis and function to treat MYC-driven cancer.

Collaboration


Dive into the Jake Shortt's collaboration.

Top Co-Authors

Avatar

Ricky W. Johnstone

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark N. Polizzotto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin P. Martin

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Grant A. McArthur

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus Lefebure

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge