Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jakob Heinzle is active.

Publication


Featured researches published by Jakob Heinzle.


The Journal of Neuroscience | 2012

Connectivity-Based Parcellation of the Human Orbitofrontal Cortex

Thorsten Kahnt; Luke J. Chang; Soyoung Q. Park; Jakob Heinzle; John-Dylan Haynes

The primate orbitofrontal cortex (OFC) is involved in reward processing, learning, and decision making. Research in monkeys has shown that this region is densely connected with higher sensory, limbic, and subcortical regions. Moreover, a parcellation of the monkey OFC into two subdivisions has been suggested based on its intrinsic anatomical connections. However, in humans, little is known about any functional subdivisions of the OFC except for a rather coarse medial/lateral distinction. Here, we used resting-state fMRI in combination with unsupervised clustering techniques to investigate whether OFC subdivisions can be revealed based on their functional connectivity profiles with other brain regions. Examination of different cluster solutions provided support for a parcellation into two parts as observed in monkeys, but it also highlighted a much finer hierarchical clustering of the orbital surface. Specifically, we identified (1) a medial, (2) a posterior-central, (3) a central, and (4–6) three lateral clusters spanning the anterior–posterior gradient. Consistent with animal tracing studies, these OFC clusters were connected to other cortical regions such as prefrontal, temporal, and parietal cortices but also subcortical areas in the striatum and the midbrain. These connectivity patterns provide important implications for identifying specific functional roles of OFC subdivisions for reward processing, learning, and decision making. Moreover, this parcellation schema can provide guidance to report results in future studies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The neural code of reward anticipation in human orbitofrontal cortex

Thorsten Kahnt; Jakob Heinzle; Soyoung Q. Park; John-Dylan Haynes

An optimal choice among alternative behavioral options requires precise anticipatory representations of their possible outcomes. A fundamental question is how such anticipated outcomes are represented in the brain. Reward coding at the level of single cells in the orbitofrontal cortex (OFC) follows a more heterogeneous coding scheme than suggested by studies using functional MRI (fMRI) in humans. Using a combination of multivariate pattern classification and fMRI we show that the reward value of sensory cues can be decoded from distributed fMRI patterns in the OFC. This distributed representation is compatible with previous reports from animal electrophysiology that show that reward is encoded by different neural populations with opposing coding schemes. Importantly, the fMRI patterns representing specific values during anticipation are similar to those that emerge during the receipt of reward. Furthermore, we show that the degree of this coding similarity is related to subjects’ ability to use value information to guide behavior. These findings narrow the gap between reward coding in humans and animals and corroborate the notion that value representations in OFC are independent of whether reward is anticipated or actually received.


NeuroImage | 2011

Flow of affective information between communicating brains.

Silke Anders; Jakob Heinzle; Nikolaus Weiskopf; Thomas Ethofer; John-Dylan Haynes

When people interact, affective information is transmitted between their brains. Modern imaging techniques permit to investigate the dynamics of this brain-to-brain transfer of information. Here, we used information-based functional magnetic resonance imaging (fMRI) to investigate the flow of affective information between the brains of senders and perceivers engaged in ongoing facial communication of affect. We found that the level of neural activity within a distributed network of the perceivers brain can be successfully predicted from the neural activity in the same network in the senders brain, depending on the affect that is currently being communicated. Furthermore, there was a temporal succession in the flow of affective information from the senders brain to the perceivers brain, with information in the perceivers brain being significantly delayed relative to information in the senders brain. This delay decreased over time, possibly reflecting some ‘tuning in’ of the perceiver with the sender. Our data support current theories of intersubjectivity by providing direct evidence that during ongoing facial communication a ‘shared space’ of affect is successively built up between senders and perceivers of affective facial signals.


Journal of Computational Neuroscience | 2011

Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity

Joseph T. Lizier; Jakob Heinzle; Annette Horstmann; John-Dylan Haynes; Mikhail Prokopenko

The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.


NeuroImage | 2011

Decoding different roles for vmPFC and dlPFC in multi-attribute decision making

Thorsten Kahnt; Jakob Heinzle; Soyoung Q. Park; John-Dylan Haynes

In everyday life, successful decision making requires precise representations of expected values. However, for most behavioral options more than one attribute can be relevant in order to predict the expected reward. Thus, to make good or even optimal choices the reward predictions of multiple attributes need to be integrated into a combined expected value. Importantly, the individual attributes of such multi-attribute objects can agree or disagree in their reward prediction. Here we address where the brain encodes the combined reward prediction (averaged across attributes) and where it encodes the variability of the value predictions of the individual attributes. We acquired fMRI data while subjects performed a task in which they had to integrate reward predictions from multiple attributes into a combined value. Using time-resolved pattern recognition techniques (support vector regression) we find that (1) the combined value is encoded in distributed fMRI patterns in the ventromedial prefrontal cortex (vmPFC) and that (2) the variability of value predictions of the individual attributes is encoded in the dorsolateral prefrontal cortex (dlPFC). The combined value could be used to guide choices, whereas the variability of the value predictions of individual attributes indicates an ambiguity that results in an increased difficulty of the value-integration. These results demonstrate that the different features defining multi-attribute objects are encoded in non-overlapping brain regions and therefore suggest different roles for vmPFC and dlPFC in multi-attribute decision making.


Neuron | 2015

Translational Perspectives for Computational Neuroimaging.

Klaas E. Stephan; Sandra Iglesias; Jakob Heinzle; Andreea Oliviana Diaconescu

Functional neuroimaging has made fundamental contributions to our understanding of brain function. It remains challenging, however, to translate these advances into diagnostic tools for psychiatry. Promising new avenues for translation are provided by computational modeling of neuroimaging data. This article reviews contemporary frameworks for computational neuroimaging, with a focus on forward models linking unobservable brain states to measurements. These approaches-biophysical network models, generative models, and model-based fMRI analyses of neuromodulation-strive to move beyond statistical characterizations and toward mechanistic explanations of neuroimaging data. Focusing on schizophrenia as a paradigmatic spectrum disease, we review applications of these models to psychiatric questions, identify methodological challenges, and highlight trends of convergence among computational neuroimaging approaches. We conclude by outlining a translational neuromodeling strategy, highlighting the importance of openly available datasets from prospective patient studies for evaluating the clinical utility of computational models.


NeuroImage | 2011

Topographically specific functional connectivity between visual field maps in the human brain

Jakob Heinzle; Thorsten Kahnt; John-Dylan Haynes

Neural activity in mammalian brains exhibits large spontaneous fluctuations whose structure reveals the intrinsic functional connectivity of the brain on many spatial and temporal scales. Between remote brain regions, spontaneous activity is organized into large-scale functional networks. To date, it has remained unclear whether the intrinsic functional connectivity between brain regions scales down to the fine detail of anatomical connections, for example the fine-grained topographic connectivity structure in visual cortex. Here, we show that fMRI signal fluctuations reveal a detailed retinotopically organized functional connectivity structure between the visual field maps of remote areas of the human visual cortex. The structured coherent fluctuations were even preserved in complete darkness when all visual input was removed. While the topographic connectivity structure was clearly visible in within hemisphere connections, the between hemisphere connectivity structure differs for representations along the vertical and horizontal meridian respectively. These results suggest a tight link between spontaneous neural activity and the fine-grained topographic connectivity pattern of the human brain. Thus, intrinsic functional connectivity reflects the detailed connectivity structure of the cortex at a fine spatial scale. It might thus be a valuable tool to complement anatomical studies of the human connectome, which is one of the keys to understand the functioning of the human brain.


NeuroImage | 2011

Cortical surface-based searchlight decoding.

Yi Chen; Praneeth Namburi; Lloyd T. Elliott; Jakob Heinzle; Chun Siong Soon; Michael W.L. Chee; John-Dylan Haynes

Local voxel patterns of fMRI signals contain specific information about cognitive processes ranging from basic sensory processing to high level decision making. These patterns can be detected using multivariate pattern classification, and localization of these patterns can be achieved with searchlight methods in which the information content of spherical sub-volumes of the fMRI signal is assessed. The only assumption made by this approach is that the patterns are spatially local. We present a cortical surface-based searchlight approach to pattern localization. Voxels are grouped according to distance along the cortical surface-the intrinsic metric of cortical anatomy-rather than Euclidean distance as in volumetric searchlights. Using a paradigm in which the category of visually presented objects is decoded, we compare the surface-based method to a standard volumetric searchlight technique. Group analyses of accuracy maps produced by both methods show similar distributions of informative regions. The surface-based method achieves a finer spatial specificity with comparable peak values of significance, while the volumetric method appears to be more sensitive to small informative regions and might also capture information not located directly within the gray matter. Furthermore, our findings show that a surface centered in the middle of the gray matter contains more information than to the white-gray boundary or the pial surface.


The Journal of Neuroscience | 2007

A microcircuit model of the frontal eye fields.

Jakob Heinzle; Klaus Hepp; Kevan A. C. Martin

The cortical control of eye movements is highly sophisticated. Not only can eye movements be made to the most salient target in a visual scene, but they can also be controlled by top-down rules as is required for visual search or reading. The cortical area called frontal eye fields (FEF) has been shown to play a key role in the visual to oculomotor transformations in tasks requiring an eye movement pattern that is not completely reactive, but follows a previously learned rule. The layered, local cortical circuit, which provides the anatomical substrate for all cortical computation, has been studied extensively in primary sensory cortex. These studies led to the concept of a “canonical circuit” for neocortex (Douglas et al., 1989; Douglas and Martin, 1991), which proposes that all areas of neocortex share a common basic circuit. However, it has not ever been explored whether in principle the detailed canonical circuit derived from cat area 17 (Binzegger et al., 2004) could implement the quite different functions of prefrontal cortex. Here, we show that the canonical circuit can, with a few modifications, model the primate FEF. The spike-based network of integrate-and-fire neurons was tested in tasks that were used in electrophysiological experiments in behaving macaque monkeys. The dynamics of the model matched those of neurons observed in the FEF, and the behavioral results matched those observed in psychophysical experiments. The close relationship between the model and the cortical architecture allows a detailed comparison of the simulation results with physiological data and predicts details of the anatomical circuit of the FEF.


The Journal of Neuroscience | 2011

Decoding the formation of reward predictions across learning.

Thorsten Kahnt; Jakob Heinzle; Soyoung Q. Park; John-Dylan Haynes

The predicted reward of different behavioral options plays an important role in guiding decisions. Previous research has identified reward predictions in prefrontal and striatal brain regions. Moreover, it has been shown that the neural representation of a predicted reward is similar to the neural representation of the actual reward outcome. However, it has remained unknown how these representations emerge over the course of learning and how they relate to decision making. Here, we sought to investigate learning of predicted reward representations using functional magnetic resonance imaging and multivariate pattern classification. Using a pavlovian conditioning procedure, human subjects learned multiple novel cue–outcome associations in each scanning run. We demonstrate that across learning activity patterns in the orbitofrontal cortex, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum, coding the value of predicted rewards become similar to the patterns coding the value of actual reward outcomes. Furthermore, we provide evidence that predicted reward representations in the striatum precede those in prefrontal regions and that representations in the DLPFC are linked to subsequent value-based choices. Our results show that different brain regions represent outcome predictions by eliciting the neural representation of the actual outcome. Furthermore, they suggest that reward predictions in the DLPFC are directly related to value-based choices.

Collaboration


Dive into the Jakob Heinzle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge