Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jakob Vejby Larsen is active.

Publication


Featured researches published by Jakob Vejby Larsen.


PLOS ONE | 2011

Receptor-Mediated Endocytosis of α-Galactosidase A in Human Podocytes in Fabry Disease

Thaneas Prabakaran; Rikke Nielsen; Jakob Vejby Larsen; Søren Schwartz Sørensen; Ulla Rasmussen; Moin A. Saleem; Claus Munck Petersen; Pierre J. Verroust; Erik Ilsø Christensen

Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three endocytic receptors, mannose 6-phosphate/insulin-like growth II receptor, megalin, and sortilin and demonstrates their drug delivery capabilities for enzyme replacement therapy. Sortilin, a novel α-galactosidase A binding protein, reveals a predominant intracellular expression but also surface expression in the podocyte. The present study provides the rationale for the renal effect of treatment with α-galactosidase A and identifies potential pathways for future non-carbohydrate based drug delivery to the kidney podocyte and other potential affected organs.


Journal of Clinical Investigation | 2014

Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis.

Martin Bødtker Mortensen; Mads Kjolby; Stine Gunnersen; Jakob Vejby Larsen; Johan Palmfeldt; Erling Falk; Anders Nykjaer; Jacob F. Bentzon

Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis.


FEBS Journal | 2006

Binding areas of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis.

Sune Skeldal; Jakob Vejby Larsen; Katrine E. Pedersen; Helle H. Petersen; Rikke Egelund; Anni Christensen; Jan K. Jensen; Jørgen Gliemann; Peter A. Andreasen

Some endocytosis receptors related to the low‐density lipoprotein receptor, including low‐density lipoprotein receptor‐related protein‐1A, very‐low‐density lipoprotein receptor, and sorting protein‐related receptor, bind protease‐inhibitor complexes, including urokinase‐type plasminogen activator (uPA), plasminogen activator inhibitor‐1 (PAI‐1), and the uPA–PAI‐1 complex. The unique capacity of these receptors for high‐affinity binding of many structurally unrelated ligands renders mapping of receptor‐binding surfaces of serpin and serine protease ligands a special challenge. We have mapped the receptor‐binding area of the uPA–PAI‐1 complex by site‐directed mutagenesis. Substitution of a cluster of basic residues near the 37‐loop and 60‐loop of uPA reduced the receptor‐binding affinity of the uPA–PAI‐1 complex approximately twofold. Deletion of the N‐terminal growth factor domain of uPA reduced the affinity 2–4‐fold, depending on the receptor, and deletion of both the growth factor domain and the kringle reduced the affinity sevenfold. The binding affinity of the uPA–PAI‐1 complex to the receptors was greatly reduced by substitution of basic and hydrophobic residues in α‐helix D and α‐helix E of PAI‐1. The localization of the implicated residues in the 3D structures of uPA and PAI‐1 shows that they form a continuous receptor‐binding area spanning the serpin as well as the A‐chain and the serine protease domain of uPA. Our results suggest that the 10–100‐fold higher affinity of the uPA–PAI‐1 complex compared with the free components depends on the bonus effect of bringing the binding areas on uPA and PAI‐1 together on the same binding entity.


Molecular and Cellular Biology | 2010

Sortilin Facilitates Signaling of Ciliary Neurotrophic Factor and Related Helical Type 1 Cytokines Targeting the gp130/Leukemia Inhibitory Factor Receptor β Heterodimer

Jakob Vejby Larsen; Maria Hansen; Bjarne Kuno Møller; Peder Madsen; Jürgen Scheller; Morten Nielsen; Claus Munck Petersen

ABSTRACT Sortilin is a member of the Vps10p domain family of neuropeptide and neurotrophin binding neuronal receptors. The family members interact with and partly share a variety of ligands and partake in intracellular sorting and protein transport as well as in transmembrane signal transduction. Thus, sortilin mediates the transport of both neurotensin and nerve growth factor and interacts with their respective receptors to facilitate ligand-induced signaling. Here we report that ciliary neurotrophic factor (CNTF), and related ligands targeting the established CNTF receptor α, binds to sortilin with high affinity. We find that sortilin may have at least two functions: one is to provide rapid endocytosis and the removal of CNTF, something which is not provided by CNTF receptor α, and the other is to facilitate CNTF signaling through the gp130/leukemia inhibitory factor (LIF) receptor β heterodimeric complex. Interestingly, the latter function is independent of both the CNTF receptor α and ligand binding to sortilin but appears to implicate a direct interaction with LIF receptor β. Thus, sortilin facilitates the signaling of all helical type 1 cytokines, which engage the gp130/LIF receptor β complex.


Journal of Cell Science | 2014

σ1B adaptin regulates adipogenesis by mediating the sorting of sortilin in adipose tissue

Jennifer Baltes; Jakob Vejby Larsen; Karthikeyan Radhakrishnan; Constanze Geumann; Manuel Kratzke; Claus Munck Petersen; Peter Schu

ABSTRACT Here, we describe altered sorting of sortilin in adipocytes deficient for the &sgr;1B-containing AP-1 complex, leading to the inhibition of adipogenesis. The AP-1 complex mediates protein sorting between the trans-Golgi network and endosomes. Vertebrates express three AP1 &sgr;1 subunit isoforms – &sgr;1A, &sgr;1B and &sgr;1C (also known as AP1S1, AP1S2 and AP1S3, respectively). &sgr;1B-deficient mice display impaired recycling of synaptic vesicles and lipodystrophy. Here, we show that sortilin is overexpressed in adipose tissue from &sgr;1B−/− mice, and that its overexpression in wild-type cells is sufficient to suppress adipogenesis. &sgr;1B-specific binding of sortilin requires the sortilin DxxD-x12-DSxxxL motif. &sgr;1B deficiency does not lead to a block of sortilin transport out of a specific organelle, but the fraction that reaches lysosomes is reduced. Sortilin binds to the receptor DLK1, an inhibitor of adipocyte differentiation, and the overexpression of sortilin prevents DLK1 downregulation, leading to enhanced inhibition of adipogenesis. DLK1 and sortilin expression are not increased in the brain tissue of &sgr;1B−/− mice, although this is the tissue with the highest expression of &sgr;1B and sortilin. Thus, adipose-tissue-specific and &sgr;1B-dependent routes for the transport of sortilin exist and are involved in the regulation of adipogenesis and adipose-tissue mass.


Molecular and Cellular Biology | 2016

Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover

Jakob Vejby Larsen; Anders C. M. Kristensen; Lone Tjener Pallesen; Johannes Bauer; Christian Bjerggaard Vaegter; Morten Nielsen; Peder Madsen; Claus Munck Petersen

ABSTRACT Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ.


Biochemical Journal | 2014

Human sorCS1 binds sortilin and hampers its cellular functions.

Jakob Vejby Larsen; Guido Hermey; Esben S. Sørensen; Thaneas Prabakaran; Erik Ilsø Christensen; Jørgen Gliemann; Peder Madsen; Claus Munck Petersen

Sortilin and sorCS1 [sortilin-related Vps10p (vacuolar protein sorting/targeting protein 10) domain-containing receptor 1], both members of the Vps10p-D (Vps10p-domain) receptor family, are synthesized as precursor proteins and are converted into their mature form by enzymatic cleavage of a short N-terminal propeptide. SorCS1 does not bind its propeptide, but sortilin is able to bind not just its own propeptide, but also that of sorCS1. In the present study we show that the propeptide region of sorCS1 contains two separate sites for binding to sortilin and that only one of these sites is removed from human (as opposed to mouse) sorCS1 during processing. This leaves mature human sorCS1 with a sortilin-binding N-terminus, which allows formation of a complex between the two receptors in solution and on cell membranes. Furthermore, we find that the interaction with sorCS1 has a pronounced effect on sortilins ability to mediate the cellular uptake of alternative ligands, and to hamper its facilitation of CNTF (ciliary neutrophic factor) signalling and the induction of phosphorylated STAT3 (signal transducer and activator of transcription 3). Thus the present study reveals a novel regulatory mechanism and suggest an entirely new role for sorCS1 as a modulator of sortilin function.


Molecular and Cellular Biology | 2017

SorLA in Interleukin-6 Signaling and Turnover

Jakob Vejby Larsen; Claus Munck Petersen

ABSTRACT Interleukin-6 (IL-6) is a multifunctional cytokine with important functions in various physiologic processes. Mice lacking IL-6 exhibit multiple phenotypic abnormalities, such as an inadequate immune and acute-phase response, and elevated levels of circulating IL-6 have been found to accompany several pathological conditions. IL-6 binds the nonsignaling IL-6 receptor (IL-6R), which is expressed as a transmembrane, as well as a secreted circulating protein, before it engages homodimeric gp130 for signaling. Complex formation between IL-6 and the membrane-bound IL-6 receptor gives rise to classic cis signaling, whereas complex formation between IL-6 and the soluble IL-6R results in trans signaling. Here, we report that the endocytic receptor SorLA targets IL-6 and IL-6R. We present evidence that SorLA mediates efficient cellular uptake of both IL-6 and the circulating IL-6R in astrocytes. We further show that SorLA interacts with the membrane-bound IL-6R at the cell surface and thereby downregulates IL-6 cis signaling. Finally, we find that the SorLA ectodomain, released from the cell membrane upon enzymatic cleavage of full-length SorLA, may act as an IL-6 carrier protein that stabilizes IL-6 and its capacity for trans signaling.


Journal of Visualized Experiments | 2017

SorLA and CLC:CLF-1-dependent Downregulation of CNTFRα as Demonstrated by Western Blotting, Inhibition of Lysosomal Enzymes, and Immunocytochemistry

Jakob Vejby Larsen; Claus Munck Petersen

The heterodimeric cytokine Cardiotrophin-like Cytokine:Cytokine-like Factor-1 (CLC:CLF-1) targets the glycosylphosphatidylinositol (GPI)-anchored CNTFRα to form a trimeric complex that subsequently recruits glycoprotein 130/Leukemia Inhibitory Factor Receptor-β (gp130/LIFRβ) for signaling. Both CLC and CNTFRα are necessary for signaling but so far CLF-1 has only been known as a putative facilitator of CLC secretion. However, it has recently been shown that CLF-1 contains three binding sites: one for CLC; one for CNTFRα (that may promote assembly of the trimeric complex); and one for the endocytic receptor sorLA. The latter site provides high affinity binding of CLF-1, CLC:CLF-1, as well as the trimeric (CLC:CLF-1:CNTFRα) complex to sorLA, and in sorLA-expressing cells the soluble ligands CLF-1 and CLC:CLF-1 are rapidly taken up and internalized. In cells co-expressing CNTFRα and sorLA, CNTFRα first binds CLC:CLF-1 to form a membrane-associated trimeric complex, but it also connects to sorLA via the free sorLA-binding site in CLF-1. As a result, CNTFRα, which has no capacity for endocytosis on its own, is tugged along and internalized by the sorLA-mediated endocytosis of CLC:CLF-1. The present protocol describes the experimental procedures used to demonstrate i) the sorLA-mediated and CLC:CLF-1-dependent downregulation of surface-membrane CNTFRα expression; ii) sorLA-mediated endocytosis and lysosomal targeting of CNTFRα; and iii) the lowered cellular response to CLC:CLF-1-stimulation upon sorLA-mediated downregulation of CNTFRα.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Abstract 661: Targeting Sortilin in Immune Cells Reduces Atherosclerosis

Martin Bødtker Mortensen; Mads Kjolby; Stine Gunnersen; Jakob Vejby Larsen; Johan Palmfeldt; Erling Falk; Anders Nykjaer; Jacob F. Bentzon

Collaboration


Dive into the Jakob Vejby Larsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge