Jakub Barbasz
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jakub Barbasz.
Langmuir | 2011
Zbigniew Adamczyk; Jakub Barbasz; Michał Cieśla
Adsorption of fibrinogen, modeled as a linear chain of touching beads of various sizes, was theoretically studied using the random sequential adsorption (RSA) model. The adsorption process was assumed to consist of two steps: (i) formation of an irreversibly bound fibrinogen monolayer under the side-on orientation, which is independent of the bulk protein concentration and (ii) formation of the reversibly bound, end-on monolayer, whose coverage was dependent on the bulk concentration. Calculation based on the RSA model showed that the maximum surface concentration of the end-on (reversible) monolayer equals N(⊥∞) = 6.13 × 10(3) μm(-2) which is much larger than the previously found value for the side-on (irreversible) monolayer, equal to N(∞) = 2.27 × 10(3) μm(-2). Hence, the maximum surface concentration of fibrinogen in both orientations is determined to be 8.40 × 10(3) μm(-2) corresponding to the protein coverage of 5.70 mg m(-2) assuming 20% hydration. Additionally, the surface blocking function (ASF) was determined for the end-on fibrinogen adsorption, approximated for the entire range of coverage by the interpolating polynomial. For the coverage approaching the jamming limit, the surface blocking function (ASF) was shown to vanish proportionally to (θ(⊥∞) - θ(⊥))(2). These calculation allowed one to theoretically predict adsorption isotherms for the end-on regime of fibrinogen and adsorption kinetics under various transport conditions (diffusion and convection). Using these theoretical results, a quantitative interpretation of experimental data obtained by TIRF and ellipsometry was successfully performed. The equilibrium adsorption constant for the end-on adsorption regime was found to be 8.04 × 10(-3) m. On the basis of this value, the depth of the adsorption energy minimum, equal to -17.4 kT, was predicted, which corresponds to ΔG = -41.8 kJ mol(-1). This is in accordance with adsorption energy derived as the sum of the van der Waals and electrostatic interactions. Besides having significance for predicting fibrinogen adsorption, theoretical results derived in this work also have implications for basic science providing information on mechanisms of anisotropic protein molecule adsorption on heterogeneous surfaces.
Langmuir | 2010
Zbigniew Adamczyk; Jakub Barbasz; Michał Cieśla
Irreversible side-on adsorption of fibrinogen, modeled as a linear chain of touching beads of various size, was studied theoretically using the random sequential adsorption (RSA) model. Numerical simulation of the Monte Carlo type enabled one to determine the dependence of the surface blocking function (available surface function) on the protein coverage. These numerical results were interpolated using analytical functions based on a polynomial expansion. The dependence of the jamming coverage on the size of the simulation area was also determined. By an extrapolation of these results to the infinite area size, the maximum surface concentration of fibrinogen for the side-on adsorption was determined to be 2.26 x 10(3) microm(-2). This corresponds to a jamming coverage theta(infinity) of 0.29. It was shown that the blocking function can well be approximated in the limit of high coverage by the dependence C(theta(infinity) - theta)(4). Using this interpolating expression, the kinetics of fibrinogen adsorption under convection and diffusion transport conditions were evaluated for various bulk concentrations of the protein. These kinetic curves were derived by numerically solving the mass transport equation in the bulk with the blocking function used as a nonlinear boundary condition at the interface. It was shown that our theoretical results are in agreement with experimental kinetic data obtained by AFM, ellipsometry, and other techniques for hydrophilic surfaces in the limit of low bulk fibrinogen concentration.
Colloids and Surfaces B: Biointerfaces | 2012
Malgorzata Iwona Adamczak; H.J. Hoel; G. Gaudernack; Jakub Barbasz; Krzysztof Szczepanowicz; Piotr Warszyński
The aim of this work was to encapsulate the CdTe quantum dots within the nanocapsules that were prepared by the layer-by-layer adsorption of polyelectrolytes. Two different polyelectrolyte pairs were used as components of the shell: synthetic polycation poly(allyamine hydrochloride) (PAH), together with anionic poly(sodium styrene sulfonate) (PSS), and biocompatible cationic poly-L-lysine hydrobromide in a pair with biocompatible anionic poly-D-glutamic acid sodium salt (PGA). The saturation method was used for formation of consecutive layers on the initial CdTe-polyelectrolyte complex. A growth of the polyelectrolyte shell was followed with the electrophoretic mobility and light scattering measurements, in order to determine the zeta potential and the size of capsules, respectively. The fluorescent spectra of the quantum dots, which are embedded within the capsules, were characterized with spectrofluorimeter. Later on, they were deposited on a negatively charged mica surface and studied by the means of atomic force microscopy (AFM). In order to estimate the cytotoxicity of capsules, their influence on the B-lymphoblastoid cell line proliferation and on unspecific binding to the P-blood mononuclear cells was examined using the flow cytometry.
Journal of Colloid and Interface Science | 2011
Maria Zaucha; Zbigniew Adamczyk; Jakub Barbasz
The streaming potential of mica covered by bilayers of latex particles was measured using the parallel-plate channel cell. The size of the first latex (A500) bearing amidine charged groups was 503 nm and the second latex (L800) bearing sulfonate groups was 810 nm (at pH 5.5 and an ionic strength of 10(-2)M). The A500 latex exhibited an isoelectric point at pH 10.5, whereas the L800 latex was strongly negative at all pH. Mica sheets were precovered first by the A500 latex particles under diffusion transport conditions. The coverage of this supporting layer was regulated between 0.02 and 0.5 by changing the bulk concentration of latex and the deposition time. Then, the second layer of the L800 latex of regulated coverage up to 0.55 was deposited under the diffusion transport. The coverage of particles and their distributions in both layers were determined by a direct enumeration of particles by optical microscopy under wet conditions and by AFM. It was shown that the structure of the L800 particle layers and the maximum coverage were in accordance with theoretical simulations performed according to the random sequential adsorption (RSA) model. After forming bilayers of desired composition and structure, streaming potential measurements were carried out. The influence of the mica substrate, the supporting layer coverage, and its zeta potential on the apparent zeta potential of bilayers was systematically studied. It was established that for a bilayer coverage exceeding 0.20, the net zeta potential became independent of the substrate and the supporting layer zeta potentials. Then, the asymptotic values of the zeta potential of the bilayer approach 1/√2=0.71 of the bulk zeta potential of the particles forming the external (second) layer. This behavior was interpreted theoretically in terms of the electrokinetic model derived previously for monolayers. It was also concluded that results obtained in this work can be exploited for interpretation of polyelectrolyte film formation in the layer by layer (LbL) processes and protein adsorption pertinent to the antigen/antibody interactions.
Advances in Colloid and Interface Science | 2009
Zbigniew Adamczyk; Małgorzata Nattich; Jakub Barbasz
Theoretical and experimental results pertinent to irreversible adsorption (deposition) of particles at heterogeneous and patterned surfaces were reviewed. Three main deposition regimes are distinguished: (i) the quasi continuous surface regime, (ii) the random site surface (RSS) regime and (iii) the patterned surface regime. Theoretical results obtained for the RSS and the patterned surface regime were presented, in particular the topology of particle monolayers, the jamming (maximum) coverage, the averaged number of particles adsorbed and particle distribution density over various surface patterns. Special attention was focused on rectangular surface features (stripes). These results were obtained using the random sequential adsorption (RSA) approach, whose range of validity is assessed using the limiting analytical solutions. These theoretical predictions were used for interpretation of experimental results obtained mostly for monodisperse latex particles adsorbing on random site surfaces created by controlled colloid particle or polyelectrolyte adsorption. The structure of monolayers was analyzed adsorption probability as a function of site coverage and the jamming coverage limit for various particle to site size ratio. Finally, recent results were discussed, obtained for surface features of regular shape like circles and rectangles. It was concluded that these experimental data confirmed the validity of the RSA model for describing particle deposition at heterogeneous and patterned surfaces. It was also concluded that theoretical and experimental results obtained for model colloid systems can be effectively used as useful reference states for analyzing protein and macromolecule adsorption at heterogeneous surfaces.
Colloids and Surfaces B: Biointerfaces | 2013
Malgorzata Iwona Adamczak; M. Krok; Elzbieta Pamula; Urszula Posadowska; Krzysztof Szczepanowicz; Jakub Barbasz; Piotr Warszyński
In the present work, the CdSe/ZnS hydrophobic quantum dots were embedded within the polyelectrolyte nanocapsules. The core of the capsules, which consists of a mixture of the linseed oil with chloroform, was prepared using the spontaneous emulsification technique. The obtained emulsions were stabilized with lecithin and encapsulated using the layer-by-layer (LbL) adsorption of polyelectrolytes. The pair of biocompatible polyelectrolytes was used: the cationic poly-l-lysine hydrobromide (PLL) together with the anionic poly-d-glutamic acid sodium salt. The saturation LbL method, which is based on the stepwise formation of consecutive layers on the initial emulsion without the intermediate rinsing step, was applied to form the capsule shells. Their growth was evidenced by the capsule size and electrophoretic mobility measurements. The emulsion and the capsules were deposited on a mica surface and the deposit topology was examined by the means of atomic force microscopy (AFM). The presence of quantum dots within the oil cores was confirmed by recording the fluorescent spectra of the samples containing CdSe/ZnS. In order to evaluate cytotoxicity of the capsules, their influence on the viability of mouse embryonic fibroblasts was examined using the MTT test, followed by optical-microscope observation of morphology of the cells after hematoxylin-eosin staining.
Langmuir | 2013
Michał Cieśla; Zbigniew Adamczyk; Jakub Barbasz; Monika Wasilewska
Adsorption of fibrinogen was theoretically studied using the three-dimensional random sequential adsorption (RSA) model. Fibrinogen molecule shape was approximated by the bead model considering the presence of flexible side arms. Various cases were considered inter alia, the side-on adsorption mechanisms and the simultaneous side-on/end-on adsorption mechanism. The latter mechanisms is pertinent to fibrinogen adsorption at lower pH (below isoelectric point of 5.8) where the entire molecule is positively charged. Extensive calculations enabled one to determine the jamming surface concentration (coverage) of molecules adsorbed under the side-on and end-on orientations as well as the total coverage. For the simultaneous side-on/end-on model the maximum surface concentration was 7.29 × 10(3) μm(-2) corresponding to the protein coverage of 4.12 mg m(-2) (without considering hydration). Additionally, the surface blocking functions for different adsorption regimes were determined and analytically approximated for the entire range of coverage by the interpolating polynomials. Using these blocking functions, fibrinogen adsorption kinetics for diffusion controlled transport conditions was evaluated. Comparison of these theoretical results with experimental data was made. It was demonstrated that the simultaneous side-on/end-on model properly reflects the maximum coverage of fibrinogen adsorbed on latex particles determined via the electrokinetic (electrophoretic mobility) and AFM measurements. Also, streaming potential measurements of fibrinogen adsorption kinetics on mica were successfully interpreted in terms of this model. The theoretical results derived in this work have implications for basic science providing information on mechanisms of anisotropic protein adsorption.
Langmuir | 2008
Zbigniew Adamczyk; Jakub Barbasz; Małgorzata Nattich
Irreversible and localized adsorption of spherical particles on surface features of various shapes (collectors) was studied using the random sequential adsorption (RSA) model. Collectors in the form of dots and rectangles were considered, including the two limiting cases of squares and stripes. Numerical simulation of the Monte Carlo type enabled one to determine particle configurations, average coverage of particles, and the distribution for various collector length to particle size ratios L = L/d and collector width to particle size ratios B = b/d. It was predicted that particle coverage under the jamming state was highly nonuniform, exhibiting a maximum at the center and at the periphery of the collectors. The averaged number of particles Np adsorbed at the jamming state was also determined as a function of the L and B parameters, as well as the averaged number of particles per unit length in the case of stripes. It was revealed that Np was the highest for the circular and square collectors (for a fixed value of L). On the other hand, for L > 5, our numerical results could be well approximated by the analytical expressions Np = thetainfinityL2 for circles, Np = 4thetainfinityL2/pi for squares, Np = 4thetainfinityBL/pi for rectangles, and Np = 4thetainfinityB/pi for stripes (per unit length). It was demonstrated that the theoretical results are in agreement with experimental data obtained for latex particles adsorbing on patterned surfaces obtained by a polymer-on-polymer stamping technique of gold covered silicon and on photolitographically patterned silane layers on silica.
Journal of Chemical Physics | 2013
Michał Cieśla; Jakub Barbasz
Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.
Physical Review E | 2014
Michał Cieśla; Jakub Barbasz
Random packing of unoriented regular polygons and star polygons on a two-dimensional flat continuous surface is studied numerically using random sequential adsorption algorithm. Obtained results are analyzed to determine the saturated random packing ratio as well as its density autocorrelation function. Additionally, the kinetics of packing growth and available surface function are measured. In general, stars give lower packing ratios than polygons, but when the number of vertexes is large enough, both shapes approach disks and, therefore, properties of their packing reproduce already known results for disks.