Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jakub Dostál is active.

Publication


Featured researches published by Jakub Dostál.


Journal of the American Chemical Society | 2012

Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes.

Jakub Dostál; Tomáš Mančal; Ramunas Augulis; František Vácha; Jakub Pšenčík; Donatas Zigmantas

Chlorosomes are light-harvesting antennae that enable exceptionally efficient light energy capture and excitation transfer. They are found in certain photosynthetic bacteria, some of which live in extremely low-light environments. In this work, chlorosomes from the green sulfur bacterium Chlorobaculum tepidum were studied by coherent electronic two-dimensional (2D) spectroscopy. Previously uncharacterized ultrafast energy transfer dynamics were followed, appearing as evolution of the 2D spectral line-shape during the first 200 fs after excitation. Observed initial energy flow through the chlorosome is well explained by effective exciton diffusion on a sub-100 fs time scale, which assures efficiency and robustness of the process. The ultrafast incoherent diffusion-like behavior of the excitons points to a disordered energy landscape in the chlorosome, which leads to a rapid loss of excitonic coherences between its structural subunits. This disorder prevents observation of excitonic coherences in the experimental data and implies that the chlorosome as a whole does not function as a coherent light-harvester.


Nature Chemistry | 2016

In situ mapping of the energy flow through the entire photosynthetic apparatus.

Jakub Dostál; Jakub Pšenčík; Donatas Zigmantas

Absorption of sunlight is the first step in photosynthesis, which provides energy for the vast majority of organisms on Earth. The primary processes of photosynthesis have been studied extensively in isolated light-harvesting complexes and reaction centres, however, to understand fully the way in which organisms capture light it is crucial to also reveal the functional relationships between the individual complexes. Here we report the use of two-dimensional electronic spectroscopy to track directly the excitation-energy flow through the entire photosynthetic system of green sulfur bacteria. We unravel the functional organization of individual complexes in the photosynthetic unit and show that, whereas energy is transferred within subunits on a timescale of subpicoseconds to a few picoseconds, across the complexes the energy flows at a timescale of tens of picoseconds. Thus, we demonstrate that the bottleneck of energy transfer is between the constituents.


Journal of Chemical Physics | 2014

Unraveling the nature of coherent beatings in chlorosomes

Jakub Dostál; Tomáš Mančal; František Vácha; Jakub Pšenčík; Donatas Zigmantas

Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm(-1) that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.


Journal of Physical Chemistry B | 2014

2D spectroscopy study of water-soluble chlorophyll-binding protein from Lepidium virginicum.

Jan Alster; Heiko Lokstein; Jakub Dostál; Akira Uchida; Donatas Zigmantas

Water-soluble chlorophyll-binding proteins (WSCPs) are interesting model systems for the study of pigment-pigment and pigment-protein interactions. While class IIa WSCP has been extensively studied by spectroscopic and theoretical methods, a comprehensive spectroscopic study of class IIb WSCP was lacking so far despite the fact that its structure was determined by X-ray crystallography. In this paper, results of two-dimensional electronic spectroscopy applied to the class IIb WSCP from Lepidium virginicum are presented. Global analysis of 2D data allowed determination of energy levels and excitation energy transfer pathways in the system. Some additional pathways, not present in class IIa WSCP, were observed. The data were interpreted in terms of a model comprising two interacting chlorophyll dimers. In addition, oscillatory signals were observed and identified as coherent beatings of vibrational origin.


Optics Express | 2016

Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression

Xiaonan Ma; Jakub Dostál; Tobias Brixner

We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data.


Canadian Journal of Chemistry | 2014

Transfer of vibrational coherence through incoherent energy transfer process in Forster limit

Tomáš Mančal; Jakub Dostál; Jakub Pšenčík; Donatas Zigmantas

We study transfer of coherent nuclear oscillations between an excitation energy donor and an acceptor in a simple dimeric electronic system coupled to an unstructured thermodynamic bath and some pronounced vibrational intramolecular mode. Our focus is on the nonlinear optical response of such a system, i.e., we study both excited state energy transfer and the compensation of the so-called ground-state bleach signal. The response function formalism enables us to investigate a heterodimer with monomers coupled strongly to the bath and by a weak resonance coupling to each other (Forster rate limit). Our work is motivated by recent observation of various vibrational signatures in two-dimensional coherent spectra of energy-transferring systems including large structures with a fast energy diffusion. We find that the vibrational coherence can be transferred from donor to acceptor molecules provided the transfer rate is sufficiently fast. The ground-state bleach signal of the acceptor molecules does not show any oscillatory signatures, and oscillations in ground-state bleaching signal of the donor prevail with the amplitude, which is not decreasing with the relaxation rate. (Less)We study transfer of coherent nuclear oscillations between an excitation energy donor and an acceptor in a simple dimeric electronic system coupled to an unstructured thermodynamic bath and some pronounced vibrational intramolecular mode. Our focus is on the nonlinear optical response of such a system, i.e., we study both excited state energy transfer and the compensation of the so-called ground-state bleach signal. The response function formalism enables us to investigate a heterodimer with monomers coupled strongly to the bath and by a weak resonance coupling to each other (Forster rate limit). Our work is motivated by recent observation of various vibrational signatures in two-dimensional coherent spectra of energy-transferring systems including large structures with a fast energy diffusion. We find that the vibrational coherence can be transferred from donor to acceptor molecules provided the transfer rate is sufficiently fast. The ground-state bleach signal of the acceptor molecules does not show any...


Journal of the American Chemical Society | 2017

Solvent-Templated Folding of Perylene Bisimide Macrocycles into Coiled Double-String Ropes with Solvent-Sensitive Optical Signatures

Peter Spenst; Ryan M. Young; Brian T. Phelan; Michel Keller; Jakub Dostál; Tobias Brixner; Michael R. Wasielewski; Frank Würthner

A series of semirigid perylene bisimide (PBI) macrocycles with varied ring size containing two to nine PBI chromophores were synthesized in a one-pot reaction and their photophysical properties characterized by fluorescence, steady-state, and transient absorption spectroscopy as well as femtosecond stimulated Raman spectroscopy. These macrocycles show solvent-dependent conformational equilibria and excited-state properties. In dichloromethane, the macrocycles prevail in wide-stretched conformations and upon photoexcitation exhibit symmetry-breaking charge separation followed by charge recombination to triplet states, which photosensitize singlet oxygen formation. In contrast, in aromatic solvents folding of the macrocycles with a distinct odd-even effect regarding the number of PBI chromophore units was observed in steady-state and time-resolved absorption and fluorescence spectroscopy as well as femtosecond stimulated Raman spectroscopy. These distinctive optical properties are attributable to the folding of the even-membered macrocycles into exciton-vibrational coupled dimer pairs in aromatic solvents. Studies in a variety of aromatic solvents indicate that these solvents embed between PBI dimer pairs and accordingly template the folding of even-membered PBI macrocycles into ropelike folded conformations that give rise to solvent-specific exciton-vibrational couplings in UV-vis absorption spectra. As a consequence of the embedding of solvent molecules in the coiled double-string rope architecture, highly solvent specific intensity ratios are observed for the two lowest-energy exciton-vibrational bands, enabling assignment of the respective solvent simply based on the absorption spectra measured for the tetramer macrocycle.


Journal of Chemical Physics | 2016

Two-dimensional electronic spectroscopy can fully characterize the population transfer in molecular systems

Jakub Dostál; Barbora Benešová; Tobias Brixner

Excitation energy transfer in complex systems often proceeds through series of intermediate states. One of the goals of time-resolved spectroscopy is to identify the spectral signatures of all of them in the acquired experimental data and to characterize the energy transfer scheme between them. It is well known that in the case of transient absorption spectra such decomposition is ambiguous even if many simplifying considerations are taken. In contrast to transient absorption, absorptive 2D spectra intuitively resemble population transfer matrices. Therefore, it seems possible to decompose the 2D spectra unambiguously. Here we show that all necessary information is encoded in the combination of absorptive 2D and linear absorption spectra. We set up a simple model describing a broad class of absorptive 2D spectra and prove analytically that they can be inverted uniquely towards physical parameters fully determining the species-associated spectra of individual constituents together with all connecting intrinsic rate constants. Due to the matrix formulation of the model, it is suitable for fast computer calculation necessary to efficiently perform the inversion numerically by fitting the combination of experimental 2D and absorption spectra. Moreover, the model allows for decomposition of the 2D spectrum into its stimulated emission, ground-state bleach, and excited-state absorption components almost unambiguously. The numerical procedure is illustrated exemplarily.


Nature Communications | 2018

Direct observation of exciton–exciton interactions

Jakub Dostál; Franziska Fennel; Federico Koch; Stefanie Herbst; Frank Würthner; Tobias Brixner

Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present.Some photo-physical processes in multichromophore systems might get triggered only if two excitations are present. Here, the authors introduce exciton–exciton-interaction 2D spectroscopy, which is a non-linear optical method that can selectively track the time evolution of such effects.


international quantum electronics conference | 2013

On origin of coherence dynamics in biological complexes

David Paleček; Jakub Dostál; Jan Alster; Vytautas Butkus; Donatas Zigmantas

Dynamic quantum effects in biological systems is a hotly debated question, which since recently has been experiencing renewed wave of broad attention [1]. This discussion was initiated by the application of the multidimensional spectroscopy techniques for investigating dynamics in biological complexes. Is nature really optimized to use non-trivial quantum effects, like dynamically evolving coherent superpositions to optimize biological functions, or we observe the beatings of quantum coherences, because we use lasers that are coherent light sources, which are quite different from incoherent sunlight utilized by biological organisms? These are difficult questions that require consideration of the essence of quantum mechanics. An important step towards improved understanding in this area is investigation of the origin of coherent beatings observed in the measurements. Only the beatings with electronic character can in principle indicate the importance of dynamical quantum mechanical effects.

Collaboration


Dive into the Jakub Dostál's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakub Pšenčík

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Tobias Brixner

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tomáš Mančal

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Alster

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge