Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jakub Hanus is active.

Publication


Featured researches published by Jakub Hanus.


Cell Death and Disease | 2013

Induction of necrotic cell death by oxidative stress in retinal pigment epithelial cells

Jakub Hanus; Hong Zhang; Zhigao Wang; Qinghua Liu; Qinbo Zhou; Shusheng Wang

Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry AMD.


British Journal of Ophthalmology | 2016

Current therapeutic developments in atrophic age-related macular degeneration

Jakub Hanus; Fangkun Zhao; Shusheng Wang

Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age-Related Eye Disease Study (AREDS) formulation, which has been demonstrated to slow down the progression of dry AMD. This review summarises recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem cell-based therapy, hold great promise, which brings great hope for this devastating blinding disease.


Ageing Research Reviews | 2015

RPE necroptosis in response to oxidative stress and in AMD

Jakub Hanus; Chastain Anderson; Shusheng Wang

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly. The underlying mechanism of non-neovascular AMD (dry AMD), also named geographic atrophy (GA) remains unclear and the mechanism of retinal pigment epithelial (RPE) cell death in AMD is controversial. We review the history and recent progress in understanding the mechanism of RPE cell death induced by oxidative stress, in AMD mouse models, and in AMD patients. Due to the limitation of toolsets to distinguish between apoptosis and necroptosis (or necrosis), most previous research concludes that apoptosis is a major mechanism for RPE cell death in response to oxidative stress and in AMD. Recent studies suggest necroptosis as a major mechanism of RPE cell death in response to oxidative stress. Moreover, ultrastructural and histopathological studies support necrosis as major mechanism of RPE cells death in AMD. In this review, we discuss the mechanism of RPE cell death in response to oxidative stress, in AMD mouse models, and in human AMD patients. Based on the literature, we hypothesize that necroptosis is a major mechanism for RPE cell death in response to oxidative stress and in AMD.


International Journal of Molecular Sciences | 2016

NLRP3 Upregulation in Retinal Pigment Epithelium in Age-Related Macular Degeneration.

Yujuan Wang; Jakub Hanus; Mones Abu-Asab; Defen Shen; Alexander Ogilvy; Jingxing Ou; Xi K. Chu; Guangpu Shi; Wei Li; Shusheng Wang; Chi-Chao Chan

Inflammation and oxidative stress are involved in age-related macular degeneration (AMD) and possibly associated with an activation of neuronal apoptosis inhibitor protein/class II transcription activator of the Major Histocompatibility Complex (MHC)/heterokaryon incompatibility/telomerase-associated protein 1, leucine-rich repeat or nucleotide-binding domain, leucine-rich repeat-containing family, and pyrin domain-containing 3 (NLRP3) inflammasome. In the present study, we used a translational approach to address this hypothesis. In patients with AMD, we observed increased mRNA levels of NLRP3, pro-interleukin-1 beta (IL-1β) and pro-IL-18 in AMD lesions of the retinal pigment epithelium (RPE) and photoreceptor. In vitro, a similar increase was evoked by oxidative stress or lipopolysaccharide (LPS) stimulation in the adult retinal pigment epithelium (ARPE-19) cell line, and the increase was reduced in siRNA transfected cells to knockdown NLRP3. Ultrastructural studies of ARPE-19 cells showed a swelling of the cytoplasm, mitochondrial damage, and occurrence of autophagosome-like structures. NLRP3 positive dots were detected within autophagosome-like structures or in the extracellular space. Next, we used a mouse model of AMD, Ccl2/Cx3cr1 double knockout on rd8 background (DKO rd8) to ascertain the in vivo relevance. Ultrastructural studies of the RPE of these mice showed damaged mitochondria, autophagosome-like structures, and cytoplasmic vacuoles, which are reminiscent of the pathology seen in stressed ARPE-19 cells. The data suggest that the NLRP3 inflammasome may contribute in AMD pathogenesis.


Molecular Pharmaceutics | 2013

Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model

Xinyu Li; Qinbo Zhou; Jakub Hanus; Chastain Anderson; Hongmei Zhang; Michael T. Dellinger; Rolf A. Brekken; Shusheng Wang

Neovascularization (NV) in the cornea is a major cause of vision impairment and corneal blindness. Hemangiogenesis and lymphangiogenesis induced by inflammation underlie the pathogenesis of corneal NV. The current mainstay treatment, corticosteroid, treats the inflammation associated with corneal NV, but is not satisfactory due to such side effects as cataract and the increase in intraocular pressure. It is imperative to develop a novel therapy that specifically targets the hemangiogenesis, lymphangiogenesis, and inflammation pathways underlying corneal NV. Histone deacetylase inhibitors (HDACi) have been in clinical trials for cancer and other diseases. In particular, HDACi suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza) has been approved by the FDA for the treatment of cutaneous T-cell lymphoma. The functional mechanism of SAHA in cancer and especially in corneal NV remains unclear. Here, we show that topical application of SAHA inhibits neovascularization in an alkali-burn corneal injury model. Mechanistically, SAHA inhibits corneal NV by repressing hemangiogenesis, inflammation pathways, and previously overlooked lymphangiogenesis. Topical SAHA is well tolerated on the ocular surface. In addition, the potency of SAHA in corneal NV appears to be comparable to the current steroid therapy. SAHA may possess promising therapeutic potential in alkali-burn corneal injury and other inflammatory neovascularization disorders.


Cell death discovery | 2016

Retinal pigment epithelial cell necroptosis in response to sodium iodate.

Jakub Hanus; Chastain Anderson; D Sarraf; Jing Ma; Shusheng Wang

Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly in developed countries. The late stage of dry AMD, or geographic atrophy (GA), is characterized by extensive retinal pigment epithelium (RPE) degeneration. The underlying molecular mechanism for RPE cell death in GA remains unclear. Our previous study has established that RPE cells die predominantly from necroptosis in response to oxidative stress in vitro. Here, we extend our study and aim to characterize the nature of RPE cell death in response to sodium iodate (NaIO3) in vitro and in a NaIO3-induced retina degeneration mouse model. We found that NaIO3 induces RPE necroptosis in vitro by using a combination of molecular hallmarks. By using TUNEL assays, active caspase-3 and HMGB1 immunostaining, we confirmed that photoreceptor cells die mainly from apoptosis and RPE cells die mainly from necroptosis in response to NaIO3 in vivo. RPE necroptosis in this model is also supported by use of the RIPK1 inhibitor, Necrostatin-1. Furthermore, using novel RIPK3-GFP transgenic mouse lines, we detected RIPK3 aggregation, a hallmark of necroptosis, in the RPE cells in vivo after NaIO3 injection. Our findings suggest the necessity of re-evaluating RPE cell death mechanism in AMD models and have the potential to influence therapeutic development for dry AMD, especially GA.


Investigative Ophthalmology & Visual Science | 2015

4-Acetoxyphenol Prevents RPE Oxidative Stress–Induced Necrosis by Functioning as an NRF2 Stabilizer

Jakub Hanus; Alexander Kolkin; Julia Chimienti; Sara Botsay; Shusheng Wang

PURPOSE Oxidative stress has been suggested to be a major risk factor for the pathogenesis of AMD. Retinal pigment epithelial (RPE) cells are essential for maintaining the homeostasis of the retina, and RPE cell death and the resultant photoreceptor apoptosis have been observed in dry AMD, especially in geographic atrophy. The purpose of this article was to identify and repurpose the Food and Drug Administration-approved natural compound 4-Acetoxyphenol (4-AC), and to evaluate its effect and mechanism in protecting against oxidative stress-induced RPE necrosis. METHODS We exposed ARPE-19 cells to tert-Butyl hydroperoxide (tBHP) after pretreatment with 4-AC, and measured cell viability by MTT assay. Aggregation of RIPK3 and HMGB1 nuclear release were analyzed by transfected reporter genes. Reactive oxygen species (ROS) were measured using a commercially available ROS detection system. The importance of the NRF2/NQO1/HO-1 pathway in mediating 4-AC function was corroborated by siRNA studies, qRT-PCR, and immunostaining. RESULTS We have identified a natural antioxidant, 4-AC, which demonstrates strong abilities to protect RPE cells from oxidative stress-induced necrosis. Mechanistically, 4-AC blocked the increase of cellular ROS induced by oxidative stress, and upregulated NQO1 and HO-1 genes by stabilizing and inducing the nuclear translocation of NRF2 transcription factor. The NQO1, HO-1, and NRF2 were further shown to be required for 4-AC protection of RPE cells from death induced by tBHP. The tBHQ, an NRF2 stabilizer, consistently mimicked the protective effect of 4-AC against tBHP-induced RPE death. CONCLUSIONS The compound 4-AC protects ARPE-19 cells from oxidative stress-induced necrosis through upregulation of NQO1 and HO-1 genes by stabilization of NRF2.


Molecular and Cellular Biology | 2015

Gossypol Acetic Acid Prevents Oxidative Stress-Induced Retinal Pigment Epithelial Necrosis by Regulating the FoxO3/Sestrin2 Pathway

Jakub Hanus; Hongmei Zhang; David Chen; Qinbo Zhou; Peng Jin; Qinghua Liu; Shusheng Wang

ABSTRACT The late stage of dry age-related macular degeneration (AMD), or geographic atrophy (GA), is characterized by extensive retinal pigment epithelial (RPE) cell death, and a cure is not available currently. We have recently demonstrated that RPE cells die from necrosis in response to oxidative stress, providing a potential novel mechanism for RPE death in AMD. In this study, we screened U.S. Food and Drug Administration-approved natural compounds and identified gossypol acetic acid (GAA) as a potent inhibitor of oxidative stress-induced RPE cell death. GAA induces antioxidative response and inhibits accumulation of excessive reactive oxygen species in cells, through which it prevents the activation of intrinsic necrotic pathway in response to oxidative stress. Sestrin2 (SESN2) is found to mediate GAA function in antioxidative response and RPE survival upon oxidative stress. Moreover, Forkhead box O3 transcription factor (FoxO3) is further found to be required for GAA-mediated SESN2 expression and RPE survival. Mechanistically, GAA promotes FoxO3 nuclear translocation and binding to the SESN2 enhancer, which in turn increases its transcriptional activity. Taken together, we have identified GAA as a potent inhibitor of oxidative stress-induced RPE necrosis by regulating the FoxO3/SESN2 pathway. This study may have significant implications in the therapeutics of age-related diseases, especially GA.


Toxicological Sciences | 2016

E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells.

Chastain Anderson; Andrew Majeste; Jakub Hanus; Shusheng Wang


Molecular Therapy | 2016

Strand and Cell Type-specific Function of microRNA-126 in Angiogenesis

Qinbo Zhou; Chastain Anderson; Jakub Hanus; Fangkun Zhao; Jing Ma; Akihiko Yoshimura; Shusheng Wang

Collaboration


Dive into the Jakub Hanus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinghua Liu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongmei Zhang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhigao Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge