Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jakub Mieczkowski is active.

Publication


Featured researches published by Jakub Mieczkowski.


Journal of Molecular Medicine | 2014

The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia

Piotr Przanowski; Michal Dabrowski; Aleksandra Ellert-Miklaszewska; Michal Kloss; Jakub Mieczkowski; Beata Kaza; Anna Ronowicz; Feng Hu; Arkadiusz Piotrowski; Helmut Kettenmann; Jan Komorowski; Bozena Kaminska

Most neurological diseases are associated with chronic inflammation initiated by the activation of microglia, which produce cytotoxic and inflammatory factors. Signal transducers and activators of transcription (STATs) are potent regulators of gene expression but contribution of particular STAT to inflammatory gene expression and STAT-dependent transcriptional networks underlying brain inflammation need to be identified. In the present study, we investigated the genomic distribution of Stat binding sites and the role of Stats in the gene expression in lipopolysaccharide (LPS)-activated primary microglial cultures. Integration of chromatin immunoprecipitation-promoter microarray data and transcriptome data revealed novel Stat-target genes including Jmjd3, Ccl5, Ezr, Ifih1, Irf7, Uba7, and Pim1. While knockdown of individual Stat had little effect on the expression of tested genes, knockdown of both Stat1 and Stat3 inhibited the expression of Jmjd3 and inflammatory genes. Transcriptional regulation of Jmjd3 by Stat1 and Stat3 is a novel mechanism crucial for launching inflammatory responses in microglia. The effects of Jmjd3 on inflammatory gene expression were independent of its H3K27me3 demethylase activity. Forced expression of constitutively activated Stat1 and Stat3 induced the expression of Jmjd3, inflammation-related genes, and the production of pro-inflammatory cytokines as potently as lipopolysacharide. Gene set enrichment and gene function analysis revealed categories linked to the inflammatory response in LPS and Stat1C + Stat3C groups. We defined upstream pathways that activate STATs in response to LPS and demonstrated contribution of Tlr4 and Il-6 and interferon-γ signaling. Our findings define novel direct transcriptional targets of Stat1 and Stat3 and highlight their contribution to inflammatory gene expression.Key MessageCombined analysis of genomic Stat occupancy and transcriptome revealed novel Stat target genes in LPS-induced microglia.Jmjd3 transcription factor is a novel transcriptional target of Stat1 and Stat3.Stat1 and Stat3 cooperate with Jmjd3 to induce the expression of pro-inflammatory genes.Constitutively active Stat1 and Stat3 fully mimic the LPS-induced upregulation of inflammatory genes and secretion of cytokines.


American Journal of Pathology | 2010

Novel Proteins Regulated by mTOR in Subependymal Giant Cell Astrocytomas of Patients with Tuberous Sclerosis Complex and New Therapeutic Implications

Magdalena Tyburczy; Katarzyna Kotulska; Piotr Pokarowski; Jakub Mieczkowski; Joanna Kucharska; Wiesława Grajkowska; Maciej Roszkowski; Sergiusz Jozwiak; Bozena Kaminska

Subependymal giant cell astrocytomas (SEGAs) are rare brain tumors associated with tuberous sclerosis complex (TSC), a disease caused by mutations in TSC1 or TSC2, resulting in enhancement of mammalian target of rapamycin (mTOR) activity, dysregulation of cell growth, and tumorigenesis. Signaling via mTOR plays a role in multifaceted genomic responses, but its effectors in the brain are largely unknown. Therefore, gene expression profiling on four SEGAs was performed with Affymetrix Human Genome arrays. Of the genes differentially expressed in TSC, 11 were validated by real-time PCR on independent tumor samples and 3 SEGA-derived cultures. Expression of several proteins was confirmed by immunohistochemistry. The differentially-regulated proteins were mainly involved in tumorigenesis and nervous system development. ANXA1, GPNMB, LTF, RND3, S100A11, SFRP4, and NPTX1 genes were likely to be mTOR effector genes in SEGA, as their expression was modulated by an mTOR inhibitor, rapamycin, in SEGA-derived cells. Inhibition of mTOR signaling affected size of cultured SEGA cells but had no influence on their proliferation, morphology, or migration, whereas inhibition of both mTOR and extracellular signal-regulated kinase signaling pathways led to significant alterations of these processes. For the first time, we identified genes related to the occurrence of SEGA and regulated by mTOR and demonstrated an effective modulation of SEGA growth by pharmacological inhibition of both mTOR and extracellular signal-regulated kinase signaling pathways, which could represent a novel therapeutic approach.


Nature Communications | 2016

MNase titration reveals differences between nucleosome occupancy and chromatin accessibility.

Jakub Mieczkowski; April Cook; Sarah K. Bowman; Britta Mueller; Burak H. Alver; Sharmistha Kundu; Aimée M. Deaton; Jennifer A. Urban; Erica Larschan; Peter J. Park; Robert E. Kingston; Michael Y. Tolstorukov

Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.


Nature Genetics | 2017

SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation

Xiaofeng Wang; Ryan S. Lee; Burak H. Alver; Jeffrey R. Haswell; Su Wang; Jakub Mieczkowski; Yotam Drier; Shawn M. Gillespie; Tenley C. Archer; Jennifer Wu; Evgeni P Tzvetkov; Emma Troisi; Scott L. Pomeroy; Jaclyn A. Biegel; Michael Y. Tolstorukov; Bradley E. Bernstein; Peter J. Park; Charles W. M. Roberts

SMARCB1 (also known as SNF5, INI1, and BAF47), a core subunit of the SWI/SNF (BAF) chromatin-remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here we show that, despite having indistinguishable mutational landscapes, human rhabdoid tumors exhibit distinct enhancer H3K27ac signatures, which identify remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting—markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared by all subtypes, such as SPRY1, and other lineage-specific super-enhancers, such as SOX2 in brain-derived rhabdoid tumors. Taken together, our findings identify a new chromatin-based epigenetic mechanism underlying the tumor-suppressive activity of SMARCB1.


Cancer Biology & Therapy | 2012

Novel small molecular inhibitors disrupt the JAK/STAT3 and FAK signaling pathways and exhibit a potent antitumor activity in glioma cells

Karolina Swiatek-Machado; Jakub Mieczkowski; Aleksandra Ellert-Miklaszewska; Swierk P; Izabela Fokt; Slawomir Szymanski; Stanislaw Skora; W. Szeja; Grzegorz Grynkiewicz; Bogdan Lesyng; Waldemar Priebe; Bozena Kaminska

JAK (Janus kinase)/STAT (signal transducers and activators of transcription) signaling is involved in the regulation of cell growth, differentiation and apoptosis. Constitutive activation of STATs, in particular STAT3, is observed in a large number of human tumors, including gliomas and may contribute to oncogenesis by stimulating cell proliferation and preventing apoptosis, thus it emerges as a promising target for anti-cancer therapy. To investigate the therapeutic potential of blocking STAT3 in glioma cells a set of small synthetic molecules - caffeic acid derivatives, structurally related to AG490 was screened for its ability to inhibit STAT3. Inhibitor 2 (E)-2-cyano-N-[(S)-1-phenylethyl]-3-(pyridin-2-yl)acrylamide was the most effective in inhibition of JAK/STAT3 signaling and at doses ≥ 25 μM significantly reduced the level of phosphorylated JAK1, JAK2 and STAT3 (at Tyr705) and downregulated the expression of known STAT3 targets. In treated cells we observed rapid detachment and rounding of cells associated with reduction of focal adhesion kinase phosphorylation and activity, followed by upregulation of phosphorylated p38, JNK and ERK1/2 levels. Accumulation of cells with fragmented DNA, increases of the cleaved caspase 3 and fragmented PARP levels were detected 24 h after the treatment suggesting ongoing apoptotic cell death. Three human malignant glioblastoma cell lines defective in tumor suppressors TP53 and/or PTEN were susceptible to inhibitor 2 that induced the programmed cell death. Global gene expression profiling revealed modulation of numerous genes in cells treated with inhibitor 2 revealing novel, potential JAK/STAT targets. Our study demonstrates that suitably modified caffeic acid molecules exhibit significant cytotoxic potential toward glioma cells.


eLife | 2016

Enhancer regions show high histone H3.3 turnover that changes during differentiation

Aimée M. Deaton; Mariluz Gómez-Rodríguez; Jakub Mieczkowski; Michael Y. Tolstorukov; Sharmistha Kundu; Ruslan I. Sadreyev; Lars E. T. Jansen; Robert E. Kingston

The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation. DOI: http://dx.doi.org/10.7554/eLife.15316.001


PLOS ONE | 2012

Identification of Pathway Deregulation – Gene Expression Based Analysis of Consistent Signal Transduction

Jakub Mieczkowski; Karolina Swiatek-Machado; Bozena Kaminska

Signaling pathways belong to a complex system of communication that governs cellular processes. They represent signal transduction from an extracellular stimulus via a receptor to intracellular mediators, as well as intracellular interactions. Perturbations in signaling cascade often lead to detrimental changes in cell function and cause many diseases, including cancer. Identification of deregulated pathways may advance the understanding of complex diseases and lead to improvement of therapeutic strategies. We propose Analysis of Consistent Signal Transduction (ACST), a novel method for analysis of signaling pathways. Our method incorporates information regarding pathway topology, as well as data on the position of every gene in each pathway. To preserve gene-gene interactions we use a subject-sampling permutation model to assess the significance of pathway perturbations. We applied our approach to nine independent datasets of global gene expression profiling. The results of ACST, as well as three other methods used to analyze signaling pathways, are presented in the context of biological significance and repeatability among similar, yet independent, datasets. We demonstrate the usefulness of using information of pathway structure as well as genes’ functions in the analysis of signaling pathways. We also show that ACST leads to biologically meaningful results and high repeatability.


Oncotarget | 2015

Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma

Jakub Mieczkowski; Marta Kocyk; Pawel Nauman; Konrad Gabrusiewicz; Malgorzata Sielska; Piotr Przanowski; Marta Maleszewska; Wenson David Rajan; Dominika Pszczolkowska; Tomasz Tykocki; Wiesława Grajkowska; Katarzyna Kotulska; Marcin Roszkowski; Bogusław Kostkiewicz; Bozena Kaminska

Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma.


Genes & Development | 2017

Widespread changes in nucleosome accessibility without changes in nucleosome occupancy during a rapid transcriptional induction

Britta Mueller; Jakub Mieczkowski; Sharmistha Kundu; Peggy I. Wang; Ruslan I. Sadreyev; Michael Y. Tolstorukov; Robert E. Kingston

Activation of transcription requires alteration of chromatin by complexes that increase the accessibility of nucleosomal DNA. Removing nucleosomes from regulatory sequences has been proposed to play a significant role in activation. We tested whether changes in nucleosome occupancy occurred on the set of genes that is activated by the unfolded protein response (UPR). We observed no decrease in occupancy on most promoters, gene bodies, and enhancers. Instead, there was an increase in the accessibility of nucleosomes, as measured by micrococcal nuclease (MNase) digestion and ATAC-seq (assay for transposase-accessible chromatin [ATAC] using sequencing), that did not result from removal of the nucleosome. Thus, changes in nucleosome accessibility predominate over changes in nucleosome occupancy during rapid transcriptional induction during the UPR.


Fundamenta Informaticae | 2013

Random Reducts: A Monte Carlo Rough Set-based Method for Feature Selection in Large Datasets

Marcin Kruczyk; Nicholas Baltzer; Jakub Mieczkowski; Michał Dramiński; Jacek Koronacki; Jan Komorowski

An important step prior to constructing a classifier for a very large data set is feature selection. With many problems it is possible to find a subset of attributes that have the same discriminative power as the full data set. There are many feature selection methods but in none of them are Rough Set models tied up with statistical argumentation. Moreover, known methods of feature selection usually discard shadowed features, i.e. those carrying the same or partially the same information as the selected features. In this study we present Random Reducts RR-a feature selection method which precedes classification per se. The method is based on the Monte Carlo Feature Selection MCFS layout and uses Rough Set Theory in the feature selection process. On synthetic data, we demonstrate that the method is able to select otherwise shadowed features of which the user should be made aware, and to find interactions in the data set.

Collaboration


Dive into the Jakub Mieczkowski's collaboration.

Top Co-Authors

Avatar

Bozena Kaminska

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Michal Dabrowski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karolina Swiatek-Machado

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Piotr Przanowski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Jan Komorowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarzyna Kotulska

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Magdalena Tyburczy

Nencki Institute of Experimental Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge