Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jakub Pawełczyk is active.

Publication


Featured researches published by Jakub Pawełczyk.


Journal of Bacteriology | 2009

Mycobacterium tuberculosis is able to accumulate and utilize cholesterol.

Anna Brzostek; Jakub Pawełczyk; Anna Rumijowska-Galewicz; Bozena Dziadek; Jaroslaw Dziadek

It is expected that the obligatory human pathogen Mycobacterium tuberculosis must adapt metabolically to the various nutrients available during its cycle of infection, persistence, and reactivation. Cholesterol, which is an important part of the mammalian cytoplasmic membrane, is a potential energy source. Here, we show that M. tuberculosis grown in medium containing a carbon source other than cholesterol is able to accumulate cholesterol in the free-lipid zone of its cell wall. This cholesterol accumulation decreases the permeability of the cell wall for the primary antituberculosis drug, rifampin, and partially masks the mycobacterial surface antigens. Furthermore, M. tuberculosis was able to grow on mineral medium supplemented with cholesterol as the sole carbon source. Targeted disruption of the Rv3537 (kstD) gene inhibited growth due to inactivation of the cholesterol degradation pathway, as evidenced by accumulation of the intermediate, 9-hydroxy-4-androstene-3,17-dione. Our findings that M. tuberculosis is able to accumulate cholesterol in the presence of alternative nutrients and use it when cholesterol is the sole carbon source in vitro may facilitate future studies into the pathophysiology of this important deadly pathogen.


Journal of Biological Chemistry | 2014

Increased phagocytosis of Mycobacterium marinum mutants defective in lipooligosaccharide production: a structure-activity relationship study.

Laeticia Alibaud; Jakub Pawełczyk; Laila Gannoun-Zaki; Vipul K. Singh; Yoann Rombouts; Michel Drancourt; Jaroslaw Dziadek; Yann Guérardel; Laurent Kremer

Background: Biosynthesis and functions of Mycobacterium marinum lipooligosaccharides (LOSs) remain elusive. Results: M. marinum mutants expressing various LOS profiles were generated and used to infect macrophages and amoebae. Conclusion: Deep LOS mutants are more efficiently phagocytosed than those lacking only LOS-IV. Significance: Three novel biosynthetic genes and the effect of the LOS content in modulating uptake by phagocytes are reported. Mycobacterium marinum is a waterborne pathogen responsible for tuberculosis-like infections in ectotherms and is an occasional opportunistic human pathogen. In the environment, M. marinum also interacts with amoebae, which may serve as a natural reservoir for this microorganism. However, the description of mycobacterial determinants in the early interaction with macrophages or amoebae remains elusive. Lipooligosaccharides (LOSs) are cell surface-exposed glycolipids capable of modulating the host immune system, suggesting that they may be involved in the early interactions of M. marinum with macrophages. Herein, we addressed whether LOS composition affects the uptake of M. marinum by professional phagocytes. Mutants with various truncated LOS variants were generated, leading to the identification of several previously uncharacterized biosynthetic genes (wbbL2, MMAR_2321, and MMAR_2331). Biochemical and structural approaches allowed resolving the structures of LOS precursors accumulating in this set of mutants. These strains with structurally defined LOS profiles were then used to infect both macrophages and Acanthamoebae. An inverse correlation between LOS completeness and uptake of mycobacteria by phagocytes was found, allowing the proposal of three mutant classes: class I (papA4), devoid of LOS and highly efficiently phagocytosed; class II, accumulating only early LOS intermediates (wbbL2 and MMAR_2331) and efficiently phagocytosed but less than class I mutants; class III, lacking LOS-IV (losA, MMAR_2319, and MMAR_2321) and phagocytosed similarly to the control strain. These results indicate that phagocytosis is conditioned by the LOS pattern and that the LOS pathway used by M. marinum in macrophages is conserved during infection of amoebae.


Journal of Bacteriology | 2011

AccD6, a Key Carboxyltransferase Essential for Mycolic Acid Synthesis in Mycobacterium tuberculosis, Is Dispensable in a Nonpathogenic Strain

Jakub Pawełczyk; Anna Brzostek; Laurent Kremer; Bozena Dziadek; Anna Rumijowska-Galewicz; Marta J. Fiołka; Jaroslaw Dziadek

Acetyl coenzyme A carboxylase (ACC) is a key enzyme providing a substrate for mycolic acid biosynthesis. Although in vitro studies have demonstrated that the protein encoded by accD6 (Rv2247) may be a functional carboxyltransferase subunit of ACC in Mycobacterium tuberculosis, the in vivo function and regulation of accD6 in slow- and fast-growing mycobacteria remain elusive. Here, directed mutagenesis demonstrated that although accD6 is essential for M. tuberculosis, it can be deleted in Mycobacterium smegmatis without affecting its cell envelope integrity. Moreover, we showed that although it is part of the type II fatty acid synthase operon, the accD6 gene of M. tuberculosis, but not that of M. smegmatis, possesses its own additional promoter (P(acc)). The expression level of accD6(Mtb) placed only under the control of P(acc) is 10-fold lower than that in wild-type M. tuberculosis but is sufficient to sustain cell viability. Importantly, this limited expression level affects growth, mycolic acid content, and cell morphology. These results provide the first in vivo evidence for AccD6 as a key player in the mycolate biosynthesis of M. tuberculosis, implicating AccD6 as the essential ACC subunit in pathogenic mycobacteria and an excellent target for new antitubercular compounds. Our findings also highlight important differences in the mechanism of acetyl carboxylation between pathogenic and nonpathogenic mycobacterial species.


BMC Microbiology | 2013

The role of 3-ketosteroid 1(2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis

Marta Brzezinska; Izabela Szulc; Anna Brzostek; Magdalena Klink; Michal Kielbik; Zofia Sulowska; Jakub Pawełczyk; Jaroslaw Dziadek

BackgroundA growing body of evidence suggests that Mycobacterium tuberculosis (Mtb) uses the host’s cholesterol as a source of carbon and energy during infection. Strains defective in cholesterol transport or degradation exhibit attenuated growth in activated macrophages and diminished infectivity in animal models. The aim of this study was to evaluate intracellular replication of a cholesterol degradation-deficient Mtb mutant in human macrophages (MØ) in vitro and assess the functional responses of Mtb mutant-infected MØ.ResultsA mutant Mtb H37Rv strain containing an inactivated kstD gene (∆kstD), which encodes 3-ketosteroid 1(2)-dehydrogenase (KstD), was previously prepared using the homologous recombination-based gene-replacement technique. A control strain carrying the kstD gene complemented with an intact kstD was also previously constructed. In this study, human resting MØ were obtained after overnight differentiation of the human monocyte-macrophage cell line THP-1. Resting MØ were further activated with interferon-γ (IFN-γ). The ability of the kstD-defective Mtb mutant strain to replicate intracellularly in human MØ was evaluated using a colony-forming assay. Nitric oxide (NO) and reactive oxygen species (ROS) production by MØ infected with wild-type or ∆kstD strains was detected using Griess reagent and chemiluminescence methods, respectively. The production of tumor necrosis factor-α and interleukin-10 by MØ after infection with wild-type or mutant Mtb was examined using enzyme-linked immunosorbent assays.We found that replication of mutant Mtb was attenuated in resting MØ compared to the wild-type or complemented strains. Moreover, the mutant was unable to inhibit the NO and ROS production induced through Toll-like receptor 2 (TLR2) signaling in infected resting MØ. In contrast, mutant and wild-type Mtb behaved similarly in MØ activated with IFN-γ before and during infection.ConclusionsThe Mtb mutant ∆kstD strain, which is unable to use cholesterol as a source of carbon and energy, has a limited ability to multiply in resting MØ following infection, reflecting a failure of the ∆kstD strain to inhibit the TLR2-dependent bactericidal activity of resting MØ.


Microbiology spectrum | 2014

The Molecular Genetics of Mycolic Acid Biosynthesis

Jakub Pawełczyk; Laurent Kremer

Mycolic acids are major and specific long-chain fatty acids that represent essential components of the Mycobacterium tuberculosis cell envelope. They play a crucial role in the cell wall architecture and impermeability, hence the natural resistance of mycobacteria to most antibiotics, and represent key factors in mycobacterial virulence. Biosynthesis of mycolic acid precursors requires two types of fatty acid synthases (FASs), the eukaryotic-like multifunctional enzyme FAS I and the acyl carrier protein (ACP)-dependent FAS II systems, which consists of a series of discrete mono-functional proteins, each catalyzing one reaction in the pathway. Unlike FAS II synthases of other bacteria, the mycobacterial FAS II is incapable of de novo fatty acid synthesis from acetyl-coenzyme A, but instead elongates medium-chain-length fatty acids previously synthesized by FAS I, leading to meromycolic acids. In addition, mycolic acid subspecies with defined biological properties can be distinguished according to the chemical modifications decorating the meromycolate. Nearly all the genetic components involved in both elongation and functionalization of the meromycolic acid have been identified and are generally clustered in distinct transcriptional units. A large body of information has been generated on the enzymology of the mycolic acid biosynthetic pathway and on their genetic and biochemical/structural characterization as targets of several antitubercular drugs. This chapter is a comprehensive overview of mycolic acid structure, function, and biosynthesis. Special emphasis is given to recent work addressing the regulation of mycolic acid biosynthesis, adding new insights to our understanding of how pathogenic mycobacteria adapt their cell wall composition in response to environmental changes.


Molecules | 2014

1,4-Disubstituted Thiosemicarbazide Derivatives are Potent Inhibitors of Toxoplasma gondii Proliferation

Katarzyna Dzitko; Agata Paneth; Tomasz Plech; Jakub Pawełczyk; Paweł Stączek; Joanna Stefańska; Piotr Paneth

A series of 4-arylthiosemicarbazides substituted at the N1 position with a 5-membered heteroaryl ring was synthesized and evaluated in vitro for T. gondii inhibition proliferation and host cell cytotoxicity. At non-toxic concentrations for the host cells all studied compounds displayed excellent anti-parasitic effects when compared to sulfadiazine, indicating a high selectivity of their anti-T. gondii activity. The differences in bioactivity investigated by DFT calculations suggest that the inhibitory activity of 4-aryl-thiosemicarbazides towards T. gondii proliferation is connected with the electronic structure of the molecule. Further, these compounds were tested as potential antibacterial agents. No growth-inhibiting effect on any of the test microorganisms was observed for all the compounds, even at high concentrations.


Central European Journal of Biology | 2015

Bacteria homologus to Aeromonas capable of microcystin degradation

Joanna Mankiewicz-Boczek; Ilona Gągała; Tomasz Jurczak; Aleksandra Jaskulska; Jakub Pawełczyk; Jaroslaw Dziadek

Abstract Water blooms dominated by cyanobacteria are capable of producing hepatotoxins known as microcystins. These toxins are dangerous to people and to the environment. Therefore, for a better understanding of the biological termination of this increasingly common phenomenon, bacteria with the potential to degrade cyanobacteria-derived hepatotoxins and the degradative activity of culturable bacteria were studied. Based on the presence of the mlrA gene, bacteria with a homology to the Sphingopyxis and Stenotrophomonas genera were identified as those presenting potential for microcystins degradation directly in the water samples from the Sulejów Reservoir (SU, Central Poland). However, this biodegrading potential has not been confirmed in in vitro experiments. The degrading activity of the culturable isolates from the water studied was determined in more than 30 bacterial mixes. An analysis of the biodegradation of the microcystin-LR (MC-LR) together with an analysis of the phylogenetic affiliation of bacteria demonstrated for the first time that bacteria homologous to the Aeromonas genus were able to degrade the mentioned hepatotoxin, although the mlrA gene was not amplified. The maximal removal efficiency of MC-LR was 48%. This study demonstrates a new aspect of interactions between the microcystin-containing cyanobacteria and bacteria from the Aeromonas genus.


Parasites & Vectors | 2015

Phytoecdysteroids as modulators of the Toxoplasma gondii growth rate in human and mouse cells

Katarzyna Dzitko; Marcin M. Grzybowski; Jakub Pawełczyk; Bozena Dziadek; Justyna Gatkowska; Paweł Stączek; Henryka Długońska

BackgroundSearching for new effective drugs against human and animal toxoplasmosis we decided to test the anti-Toxoplasma potential of phytoecdysteroids (α-ecdysone and 20-hydroxyecdysone) characterized by the pleiotropic activity on mammalian organisms including the enhancement of host’s anti-parasitic defence. This objective was accomplished by the in vitro evaluation of T. gondii growth in phytoecdysteroid-treated immunocompetent cells of selected hosts: humans and two strains of inbred mice with genetically determined different susceptibility to toxoplasmosis.MethodsPeripheral mononuclear blood cells were isolated from Toxoplasma-positive and Toxoplasma-negative women (N = 43) and men (N = 21). Non-infected mice (C57BL/6, N = 10 and BALB/c, N = 14) and mice (BALB/c, N = 10) challenged intraperitoneally with 5 tissue cysts of the T. gondii DX strain were also used in this study as a source of splenocytes. The effects of phytoecdysteroids on the viability of human PBMC and mouse splenocytes were evaluated using the MTT assay. The influence of phytoecdysteroids on PBMCs, splenocytes and T. gondii proliferation was measured using radioactivity tests (the level of 3[H] uracil incorporation by toxoplasms or 3[H] thymidine by PBMCs and splenocytes), which was confirmed by quantitative Real-Time PCR. Statistical analysis was performed using SigmaStat 3.5 (Systat Software GmbH). The best-fit IC50 curves were plotted using GraphPad Prism 6.0 (GraphPad Software, Inc.).ResultsOur results showed that phytoecdysteroids promote the multiplication of Toxoplasma in cultures of human or murine immune cells, in contrast to another apicomplexan parasite, Babesia gibsoni. Additionally, the tested phytoecdysteroids did not stimulate the in vitro secretion of the essential protective cytokines (IFN-γ, IL-2 and IL-10), neither by human nor by murine immune cells involved in an effective intracellular killing of the parasite.ConclusionsJudging by the effect of phytoecdysteroids on the T. gondii proliferation, demonstrated for the first time in this study, it seems that these compounds should not be taken into consideration as potential medications to treat toxoplasmosis. Phytoecdysteroids included in the food are most likely not harmful for human or animal health but certain nutrients containing ecdysteroids at high concentrations could promote T. gondii proliferation in chronically infected and immunocompromised individuals. In order to assess the real impact of ecdysteroids on the course of natural T. gondii invasion, in vivo research should be undertaken because it cannot be ruled out that the in vivo effect will be different than the in vitro one. However, taking into account the possible stimulating effect of ecdysteroids on some opportunistic parasites (such as Toxoplasma or Strongyloides) further studies are necessary and should focus on the mechanisms of their action, which directly or indirectly enhance the parasite growth. Since ecdysteroids are considered as potential drugs, it is essential to determine their effect on various parasitic pathogens, which may infect the host at the same time, especially in immunocompromised individuals.


Antimicrobial Agents and Chemotherapy | 2014

Triazole-Based Compound as a Candidate To Develop Novel Medicines To Treat Toxoplasmosis

Katarzyna Dzitko; Agata Paneth; Tomasz Plech; Jakub Pawełczyk; Lidia Węglińska; Piotr Paneth

ABSTRACT This article reports anti-Toxoplasma gondii activity of 3-(thiophen-2-yl)-1,2,4-triazole-5-thione. The compound displayed significant and reproducible antiparasitic effects at nontoxic concentrations for the host cells, with an experimentally determined 50% inhibitory concentration (IC50) at least 30 times better than that of the known chemotherapeutic agent sulfadiazine. Purine nucleoside phosphorylase was defined as the probable target for anti-Toxoplasma activity of the tested compound. These results provide the foundation for future work to develop a new class of medicines to better treat toxoplasmosis.


Microbial Cell Factories | 2017

Severe inhibition of lipooligosaccharide synthesis induces TLR2-dependent elimination of Mycobacterium marinum from THP1-derived macrophages

Izabela Szulc-Kielbik; Jakub Pawełczyk; Michal Kielbik; Laurent Kremer; Jaroslaw Dziadek; Magdalena Klink

BackgroundAlthough mycobacterial glycolipids are among the first-line molecules involved in host–pathogen interactions, their contribution in virulence remains incomplete. Mycobacterium marinum is a waterborne pathogen of fish and other ectotherms, closely related to Mycobacterium tuberculosis. Since it causes tuberculosis-like systemic infection it is widely used as a model organism for studying the pathogenesis of tuberculosis. It is also an occasional opportunistic human pathogen. The M. marinum surface-exposed lipooligosaccharides (LOS) are immunogenic molecules that participate in the early interactions with macrophages and modulate the host immune system. Four major LOS species, designated LOS-I to LOS-IV, have been identified and characterized in M. marinum. Herein, we investigated the interactions between a panel of defined M. marinum LOS mutants that exhibited various degrees of truncation in the LOS structure, and human-derived THP-1 macrophages to address the potential of LOSs to act as pro- or avirulence factors.ResultsA moderately truncated LOS structure did not interfere with M. marinum invasion. However, a deeper shortening of the LOS structure was associated with increased entry of M. marinum into host cells and increased elimination of the bacilli by the macrophages. These effects were dependent on Toll-like receptor 2.ConclusionWe provide the first evidence that LOSs inhibit the interaction between mycobacterial cell wall ligands and appropriate macrophage pattern recognition receptors, affecting uptake and elimination of the bacteria by host phagocytes.

Collaboration


Dive into the Jakub Pawełczyk's collaboration.

Top Co-Authors

Avatar

Jaroslaw Dziadek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Brzostek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilona Gągała

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Kremer

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge