Jakub Šebera
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jakub Šebera.
Nucleic Acids Research | 2014
Hiroshi Yamaguchi; Jakub Šebera; Jiro Kondo; Shuji Oda; Tomoyuki Komuro; Takuya Kawamura; Takenori Dairaku; Yoshinori Kondo; Itaru Okamoto; Akira Ono; Jaroslav V. Burda; Chojiro Kojima; Vladimír Sychrovský; Yoshiyuki Tanaka
We have determined the three-dimensional (3D) structure of DNA duplex that includes tandem HgII-mediated T–T base pairs (thymine–HgII–thymine, T–HgII–T) with NMR spectroscopy in solution. This is the first 3D structure of metallo-DNA (covalently metallated DNA) composed exclusively of ‘NATURAL’ bases. The T–HgII–T base pairs whose chemical structure was determined with the 15N NMR spectroscopy were well accommodated in a B-form double helix, mimicking normal Watson–Crick base pairs. The Hg atoms aligned along DNA helical axis were shielded from the bulk water. The complete dehydration of Hg atoms inside DNA explained the positive reaction entropy (ΔS) for the T–HgII–T base pair formation. The positive ΔS value arises owing to the HgII dehydration, which was approved with the 3D structure. The 3D structure explained extraordinary affinity of thymine towards HgII and revealed arrangement of T–HgII–T base pairs in metallo-DNA.
Journal of Physical Chemistry B | 2014
Irena Kratochvílová; M. Golan; Martin Vala; Miroslava Špérová; Martin Weiter; Ondřej Páv; Jakub Šebera; Ivan Rosenberg; V. Sychrovsky; Yoshiyuki Tanaka; F.M. Bickelhaupt
DNA-Hg complexes may play an important role in sensing DNA defects or in detecting the presence of Hg in the environment. A fundamental way of characterizing DNA-Hg complexes is to study the way the electric charge is transferred through the molecular chain. The main goal of this contribution was to investigate the impact of a mercury metal cation that links two thymine bases in a DNA T-T mismatched base pair (T-Hg-T) on charge transfer through the DNA molecule. We compared the charge transfer efficiencies in standard DNA, DNA with mismatched T-T base pairs, and DNA with a T-Hg(II)-T base pair. For this purpose, we measured the temperature dependence of steady-state fluorescence and UV-vis of the DNA molecules. The experimental results were confronted with the results obtained employing theoretical DFT methods. Generally, the efficiency of charge transfer was driven by mercury changing the spatial overlap of bases.
Journal of Physical Chemistry B | 2010
Irena Kratochvílová; Tatiana Todorciuc; Karel Král; Hynek Němec; Martin Bunček; Jakub Šebera; Stanislav Záliš; Zuzana Vokáčová; Vladimír Sychrovský; Lucie Bednárová; Peter Mojzeš; Bohdan Schneider
We combined various experimental (scanning tunneling microscopy and Raman spectroscopy) and theoretical (density functional theory and molecular dynamics) approaches to study the relationships between the base-pairing patterns and the charge transfer properties in DNA 32-mer duplexes that may be relevant for identification and repair of defects in base pairing of the genetic DNA and for DNA use in nanotechnologies. Studied were two fully Watson-Crick (W-C)-paired duplexes, one mismatched (containing three non-W-C pairs), and three with base pairs chemically removed. The results show that the charge transport varies strongly between these duplexes. The conductivity of the mismatched duplex is considerably lower than that of the W-C-paired one despite the fact that their structural integrities and thermal stabilities are comparable. Structurally and thermally much less stable abasic duplexes have still lower conductivity but not markedly different from the mismatched duplex. All duplexes are likely to conduct by the hole mechanism, and water orbitals increase the charge transport probability.
Chemistry: A European Journal | 2013
Jakub Šebera; Jaroslav V. Burda; Michal Straka; Akira Ono; Chojiro Kojima; Yoshiyuki Tanaka; Vladimír Sychrovský
A reaction mechanism that describes the substitution of two imino protons in a thymine:thymine (T:T) mismatched DNA base pair with a Hg(II) ion, which results in the formation of a (T)N3-Hg(II)-N3(T) metal-mediated base pair was proposed and calculated. The mechanism assumes two key steps: The formation of the first Hg(II)-N3(T) bond is triggered by deprotonation of the imino N3 atom in thymine with a hydroxo ligand on the Hg(II) ion. The formation of the second Hg(II)-N3(T) bond proceeds through water-assisted tautomerization of the remaining, metal-nonbonded thymine base or through thymine deprotonation with a hydroxo ligand of the Hg(II) ion already coordinated to the thymine base. The thermodynamic parameters ΔGR =-9.5 kcal mol(-1), ΔHR =-4.7 kcal mol(-1), and ΔSR =16.0 cal mol(-1) K(-1) calculated with the ONIOM (B3LYP:BP86) method for the reaction agreed well with the isothermal titration calorimetric (ITC) measurements by Torigoe et al. [H. Torigoe, A. Ono, T. Kozasa, Chem. Eur. J. 2010, 16, 13218-13225]. The peculiar positive reaction entropy measured previously was due to both dehydration of the metal and the change in chemical bonding. The mercury reactant in the theoretical model contained one hydroxo ligand in accord with the experimental pKa value of 3.6 known for an aqua ligand of a Hg(II) center. The chemical modification of T:T mismatched to the T-Hg(II)-T metal-mediated base pair was modeled for the middle base pair within a trinucleotide B-DNA duplex, which ensured complete dehydration of the Hg(II) ion during the reaction.
Chemical Communications | 2011
Antonín Trojánek; Jan Langmaier; Jakub Šebera; Stanislav Záliš; Jean-Michel Barbe; Hubert H. Girault; Zdeněk Samec
The catalytic effect of tetraphenylporphyrin on the oxygen reduction with ferrocene in 1,2-dichloroethane can be finely tuned by varying the molar ratio of the acid to the catalyst present in the solution. The mechanism involves binding of molecular oxygen to the protonated free porphyrin base, in competition with ion pairing between the protonated base and the acid anion present.
Chemistry: A European Journal | 2016
Takenori Dairaku; Kyoko Furuita; Hajime Sato; Jakub Šebera; Katsuyuki Nakashima; Jiro Kondo; Daichi Yamanaka; Yoshinori Kondo; Itaru Okamoto; Akira Ono; Vladimír Sychrovský; Chojiro Kojima; Yoshiyuki Tanaka
The structure of an Ag(I) -mediated cytosine-cytosine base pair, C-Ag(I) -C, was determined with NMR spectroscopy in solution. The observation of 1-bond (15) N-(109) Ag J-coupling ((1) J((15) N,(109) Ag): 83 and 84 Hz) recorded within the C-Ag(I) -C base pair evidenced the N3-Ag(I) -N3 linkage in C-Ag(I) -C. The triplet resonances of the N4 atoms in C-Ag(I) -C demonstrated that each exocyclic N4 atom exists as an amino group (-NH2 ), and any isomerization and/or N4-Ag(I) bonding can be excluded. The 3D structure of Ag(I) -DNA complex determined with NOEs was classified as a B-form conformation with a notable propeller twist of C-Ag(I) -C (-18.3±3.0°). The (109) Ag NMR chemical shift of C-Ag(I) -C was recorded for cytidine/Ag(I) complex (δ((109) Ag): 442 ppm) to completed full NMR characterization of the metal linkage. The structural interpretation of NMR data with quantum mechanical calculations corroborated the structure of the C-Ag(I) -C base pair.
Chemical Communications | 2015
Takenori Dairaku; Kyoko Furuita; Hajime Sato; Jakub Šebera; Daichi Yamanaka; Hiroyuki Otaki; Shoko Kikkawa; Yoshinori Kondo; Ritsuko Katahira; F. Matthias Bickelhaupt; Célia Fonseca Guerra; Akira Ono; Vladimír Sychrovský; Chojiro Kojima; Yoshiyuki Tanaka
We have observed the 1-bond (199)Hg-(15)N J-coupling ((1)J((199)Hg,(15)N) = 1050 Hz) within the Hg(II)-mediated thymine-thymine base pair (T-Hg(II)-T). This strikingly large (1)J((199)Hg,(15)N) is the first one for canonical sp(2)-nitrogen atoms, which can be a sensitive structure-probe of N-mercurated compounds and a direct evidence for N-mercuration.
Biophysical Chemistry | 2013
Irena Kratochvílová; Martin Vala; Martin Weiter; Miroslava Špérová; Bohdan Schneider; Ondřej Páv; Jakub Šebera; Ivan Rosenberg; Vladimír Sychrovský
Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings.
RSC Advances | 2014
Jakub Šebera; Lukáš Trantírek; Yoshiyuki Tanaka; Radim Nencka; Jiří Fukal; Vladimír Sychrovský
The activation of N-glycosidic bond cleavage performed by the lysine 249 (Lys 249) residue of base-excision repair enzyme hOGG1 was calculated for 2′-deoxyguanosine (G), 8-oxo-2′-deoxyguanosine (OxoG) and N6-(2′-β-D-deoxyribofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). The interaction sites of Lys 249 included the C1′, N3, and N9 atoms of the nucleosides. The N9-pathway, specifically the attack of lone-pair electrons of glycosidic nitrogen N9 of a nucleoside on the proton of the Ne-ammonium group of Lys 249, resulted in effective activation of the C1′–N9 bond that was highly specific with respect to normal (G) and damaged (OxoG, FapyG) nucleosides. The specificity of the N9-pathway was because of the electrophilic (G) or nucleophilic (OxoG, FapyG) character of the glycosidic nitrogen and because of the specific interactions of the residues within the catalytic pocket with the substrate (particularly the Gly 42 hOGG1 residue) that enforced the displacement of G out of the interaction range of Lys 249. The chemical modifications of G owing to damage specifically affected a number of molecular properties, particularly the electrophilicity/nucleophilicity of N9 and the C1′–N9 bond order and the aromatic character of the nucleobases. The N9-pathway could be involved as a check-point mechanism during base-excision performed by hOGG1.
RSC Advances | 2017
Irena Kratochvílová; Martin Golan; Karel Pomeisl; Jan Richter; Silvia Sedláková; Jakub Šebera; Júlia Mičová; Martin Falk; Iva Falková; David Řeha; K. Wade Elliott; Krisztina Varga; Shelby E. Follett; Daniel Šimek
In this work the physico-chemical properties of selected cryoprotectants (antifreeze protein TrxA-AFP752, trehalose and dimethyl sulfoxide) were correlated with their impact on the constitution of ice and influence on frozen/thawed cell viability. The freezing processes and states of investigated materials solutions were described and explained from a fundamental point of view using ab-initio modelling (molecular dynamics, DFT), Raman spectroscopy, Differential Scanning Calorimetry and X-Ray Diffraction. For the first time, in this work we correlated the microscopic view (modelling) with the description of the frozen solution states and put these results in the context of human skin fibroblast viability after freezing and thawing. DMSO and AFP had different impacts on their solutions freezing process but in both cases the ice crystallinity size was considerably reduced. DMSO and AFP treatment in different ways improved the viability of frozen/thawed cells.