Jakub Zakrzewski
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jakub Zakrzewski.
Physical Review Letters | 2003
Bogdan Damski; Jakub Zakrzewski; L. Santos; P. Zoller; Maciej Lewenstein
An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable filling factor, in the strong-interaction limit, a controlled growing of the disorder drives a dynamical transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of the system.
Physical Review Letters | 2005
T. Schulte; S. Drenkelforth; J. Kruse; W. Ertmer; J. Arlt; Krzysztof Sacha; Jakub Zakrzewski; Maciej Lewenstein
We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.
Reports on Progress in Physics | 2015
Omjyoti Dutta; Mariusz Gajda; Philipp Hauke; Maciej Lewenstein; Dirk-Sören Lühmann; Boris A. Malomed; Tomasz Sowiński; Jakub Zakrzewski
Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.
Physics Reports | 2002
Andreas Buchleitner; Dominique Delande; Jakub Zakrzewski
Abstract With the exception of the harmonic oscillator, quantum wave packets usually spread as time evolves. This is due to the non-linear character of the classical equations of motion which makes the various components of the wave packet evolve at various frequencies. We show here that, using the non-linear resonance between an internal frequency of a system and an external periodic driving, it is possible to overcome this spreading and build non-dispersive (or non-spreading) wave packets which are well localized and follow a classical periodic orbit without spreading. From the quantum mechanical point of view, the non-dispersive wave packets are time periodic eigenstates of the Floquet Hamiltonian, localized in the non-linear resonance island. We discuss the general mechanism which produces the non-dispersive wave packets, with emphasis on simple realization in the electronic motion of a Rydberg electron driven by a microwave field. We show the robustness of such wave packets for a model one-dimensional as well as for realistic three-dimensional atoms. We consider their essential properties such as the stability versus ionization, the characteristic energy spectrum and long lifetimes. The requirements for experiments aimed at observing such non-dispersive wave packets are also considered. The analysis is extended to situations in which the driving frequency is a multiple of the internal atomic frequency. Such a case allows us to discuss non-dispersive states composed of several, macroscopically separated wave packets communicating among themselves by tunneling. Similarly we briefly discuss other closely related phenomena in atomic and molecular physics as well as possible further extensions of the theory.
Journal of Chemical Physics | 1989
Jose M. Gomez Llorente; Jakub Zakrzewski; Howard S. Taylor; K. C. Kulander
Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasicontinuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose ...
Physical Review Letters | 2004
A. Sanpera; Adrian Kantian; Laurent Sanchez-Palencia; Jakub Zakrzewski; Maciej Lewenstein
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices.
Reports on Progress in Physics | 2018
Krzysztof Sacha; Jakub Zakrzewski
Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals-the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczeks idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.
Journal of Chemical Physics | 1988
Jose M. Gomez Llorente; Jakub Zakrzewski; Howard S. Taylor; K. C. Kulander
A quantum theory of periodic orbit based resonances is presented and applied to the photodissociation of highly excited H+3. Ab initio stabilization computations are performed to show that periodic orbits are the origin of stable roots producing scars along the orbits in the system’s wave functions. Spacings and widths of the resonances are in satisfactory agreement with the experiment and verify the mechanism proposed by Gomez and Pollak. The validity and utility of the PO based resonance theory to study the dynamics of highly excited systems is demonstrated.A quantum theory of periodic orbit based resonances is presented and applied to the photodissociation of highly excited H+3. Ab initio stabilization computations are performed to show that periodic orbits are the origin of stable roots producing scars along the orbits in the system’s wave functions. Spacings and widths of the resonances are in satisfactory agreement with the experiment and verify the mechanism proposed by Gomez and Pollak. The validity and utility of the PO based resonance theory to study the dynamics of highly excited systems is demonstrated.
Physical Review A | 1998
Dominique Delande; Jakub Zakrzewski
Nondispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states, and show that the elastic incoherent component ~occurring at the frequency of the driving field! dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single-photon emissions and the associated rates in the ‘‘harmonic approximation,’’ i.e., when the wave packet has approximately a Gaussian shape. The results agree well with exact quantum-mechanical calculations, which validates the analytical approach. @S1050-2947~98!04307-8#
Physical Review A | 2005
Jakub Zakrzewski
A large-scale dynamical simulation of the superfluid-Mott-insulator transition in a gas of ultracold atoms placed in an optical lattice is performed using the time-dependent Gutzwiller mean-field approach. This approximate treatment allows us to take into account most of the details of the recent experiment [Greiner et al., Nature (London) 415, 39 (2002)] where by changing the depth of the lattice potential an adiabatic transition from a superfluid to a Mott insulator state has been reported. Our simulations reveal a significant excitation of the system with a transition to insulator in restricted regions of the trap only.