Jalal Shiri
University of Tabriz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jalal Shiri.
Computers & Geosciences | 2010
Mohammad Ali Ghorbani; Rahman Khatibi; Ali Aytek; Oleg Makarynskyy; Jalal Shiri
Water level forecasting at various time intervals using records of past time series is of importance in water resources engineering and management. In the last 20 years, emerging approaches over the conventional harmonic analysis techniques are based on using Genetic Programming (GP) and Artificial Neural Networks (ANNs). In the present study, the GP is used to forecast sea level variations, three time steps ahead, for a set of time intervals comprising 12h, 24h, 5 day and 10 day time intervals using observed sea levels. The measurements from a single tide gauge at Hillarys Boat Harbor, Western Australia, were used to train and validate the employed GP for the period from December 1991 to December 2002. Statistical parameters, namely, the root mean square error, correlation coefficient and scatter index, are used to measure their performances. These were compared with a corresponding set of published results using an Artificial Neural Network model. The results show that both these artificial intelligence methodologies perform satisfactorily and may be considered as alternatives to the harmonic analysis.
Computers & Geosciences | 2013
Ozgur Kisi; Jalal Shiri; Mustafa Tombul
Rainfall-runoff process was modeled for a small catchment in Turkey, using 4 years (1987-1991) of measurements of independent variables of rainfall and runoff values. The models used in the study were Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gene Expression Programming (GEP) which are Artificial Intelligence (AI) approaches. The applied models were trained and tested using various combinations of the independent variables. The goodness of fit for the model was evaluated in terms of the coefficient of determination (R^2), root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and scatter index (SI). A comparison was also made between these models and traditional Multi Linear Regression (MLR) model. The study provides evidence that GEP (with RMSE=17.82l/s, MAE=6.61l/s, CE=0.72 and R^2=0.978) is capable of modeling rainfall-runoff process and is a viable alternative to other applied artificial intelligence and MLR time-series methods.
Computers & Geosciences | 2011
Jalal Shiri; Ozgur Kisi
This paper investigates the ability of genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) techniques for groundwater depth forecasting. Five different GP and ANFIS models comprising various combinations of water table depth values from two stations, Bondville and Perry, are developed to forecast one-, two- and three-day ahead water table depths. The root mean square errors (RMSE), scatter index (SI), Variance account for (VAF) and coefficient of determination (R^2) statistics are used for evaluating the accuracy of models. Based on the comparisons, it was found that the GP and ANFIS models could be employed successfully in forecasting water table depth fluctuations. However, GP is superior to ANFIS in giving explicit expressions for the problem.
Computers & Geosciences | 2012
Ozgur Kisi; Jalal Shiri; Bagher Nikoofar
Accurate prediction of lake-level variations is important for planning, design, construction, and operation of lakeshore structures and also in the management of freshwater lakes for water supply purposes. In the present paper, three artificial intelligence approaches, namely artificial neural networks (ANNs), adaptive-neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP), were applied to forecast daily lake-level variations up to 3-day ahead time intervals. The measurements at the Lake Iznik in Western Turkey, for the period of January 1961-December 1982, were used for training, testing, and validating the employed models. The results obtained by the GEP approach indicated that it performs better than ANFIS and ANNs in predicting lake-level variations. A comparison was also made between these artificial intelligence approaches and convenient autoregressive moving average (ARMA) models, which demonstrated the superiority of GEP, ANFIS, and ANN models over ARMA models.
Computers & Geosciences | 2012
Ozgur Kisi; Jalal Shiri
Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.
Journal of Irrigation and Drainage Engineering-asce | 2011
Jalal Shiri; Ozgur Kisi
Estimation of evaporation, a major component of the hydrologic cycle, is required for a variety of purposes in water resources development and management. This paper investigates the abilities of genetic programming (GP) to improve the accuracy of daily evaporation estimation. In the first part of the study, different GP models, comprising various combinations of daily climatic variables, namely, air temperature, sunshine hours, wind speed, and relative humidity, were developed to evaluate the degree of the effect of each variable on daily pan evaporation. A dynamic modeling of evaporation was also performed, with the current climatic variables and one of the previous variables, to evaluate the effect of their time series on evaporation. In the second part of the study, the estimated solar radiation data were used as input vectors instead of recorded sunshine values. Statistics such as correlation coefficient (R), root mean square error (RMSE), coefficient of residual mass (CRM) and scatter index (SI) were used to measure the performance of models. Tthe dynamic model approach was shown to give the best results with relatively fewer errors and higher correlations. To assess the ability of GP relative to the neuro-fuzzy (NF) and artificial neural networks (ANN), several NF and ANN models were developed by using the same data set. The obtained results showed the superiority of GP to the NF and ANN approaches. The Stephen-Stewart and Christiansen methods were also considered for comparison. The results indicated that the proposed GP model performed quite well in modeling evaporation processes from the available climatic data. The results also showed that the estimated solar radiation data can be applied successfully instead of the recorded sunshine data.
Computers & Geosciences | 2013
Sepideh Karimi; Ozgur Kisi; Jalal Shiri; Oleg Makarynskyy
Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1h, 24h, 48h and 72h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.
Water Resources Management | 2013
Sungwon Kim; Jalal Shiri; Ozgur Kisi; Vijay P. Singh
This study develops three neural networks models for estimating daily pan evaporation (PE) in South Korea: multilayer perceptron-neural networks model (MLP-NNM), generalized regression neural networks model (GRNNM), and adaptive neuro-fuzzy inference system (ANFIS). Daily PE was estimated at Daegu and Ulsan stations using temperature-based, radiation-based, sunshine duration-based and merged input combinations under lag-time patterns. Daily evaporation values computed by the models using merged inputs agreed with observed values. Comparison was also made between the neural networks models and multiple linear regression model (MLRM), which showed the superiority of MLP-NNM, GRNNM, and ANFIS over MLRM. It is concluded that the applied neural networks models can be successfully employed for estimating daily PE in South Korea.
Computers & Geosciences | 2013
Jalal Shiri; Ozgur Kisi; Heesung Yoon; Kang-Kun Lee; Amir Hossein Nazemi
The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records. Highlights? We predict water table depth fluctuations by using genetic programming (GEP). ? GEP results are compared with neuro-fuzzy (ANFIS) and neural networks (NN) methods. ? Comparison results show that the GEP models perform better than the other models. ? The precipitation is found to be an effective variable on water table depth.
Journal of Waterway Port Coastal and Ocean Engineering-asce | 2011
Jalal Shiri; Oleg Makarynskyy; Ozgur Kisi; Willy Dierickx; Ahmad Fakheri Fard
Sea level estimates are important in many coastal applications and port activities. This paper investigates the ability of a neuro-fuzzy (NF) model to predict sea level variations at a tide gauge site in the Hillarys Boat Harbour, Western Australia. In the first part of the study, previously recorded sea levels were used as input to estimate current sea levels. The results showed an acceptable level of NF model accuracy. In the second part of the study, NF models were implemented to forecast sea levels averaged over 12- and 24-h time periods, three time steps ahead. The NF forecasts were compared with those of artificial neural networks (ANNs) for the same data set. The results show that the NF approach performed better than the ANN in half-daily 12-, 24-, and 36-h sea level predictions. The traditional linear regression and autoregressive models were also tested for comparison, and they demonstrated their inferiority to the results of other techniques.