Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaleh Ghashghaie is active.

Publication


Featured researches published by Jaleh Ghashghaie.


Plant Physiology | 2003

Metabolic Origin of Carbon Isotope Composition of Leaf Dark-Respired CO2 in French Bean

Guillaume Tcherkez; Salvador Nogués; Jean Bleton; Gabriel Cornic; Franz W. Badeck; Jaleh Ghashghaie

The carbon isotope composition (δ13C) of CO2 produced in darkness by intact French bean (Phaseolus vulgaris) leaves was investigated for different leaf temperatures and during dark periods of increasing length. The δ13C of CO2 linearly decreased when temperature increased, from −19‰ at 10°C to −24‰ at 35°C. It also progressively decreased from −21‰ to −30‰ when leaves were maintained in continuous darkness for several days. Under normal conditions (temperature not exceeding 30°C and normal dark period), the evolved CO2 was enriched in 13C compared with carbohydrates, the most 13C-enriched metabolites. However, at the end of a long dark period (carbohydrate starvation), CO2 was depleted in 13C even when compared with the composition of total organic matter. In the two types of experiment, the variations of δ13C were linearly related to those of the respiratory quotient. This strongly suggests that the variation of δ13C is the direct consequence of a substrate switch that may occur to feed respiration; carbohydrate oxidation producing 13C-enriched CO2 and β-oxidation of fatty acids producing 13C-depleted CO2 when compared with total organic matter (−27.5‰). These results are consistent with the assumption that the δ13C of dark respired CO2 is determined by the relative contributions of the two major decarboxylation processes that occur in darkness: pyruvate dehydrogenase activity and the Krebs cycle.


Plant Physiology | 2005

In vivo respiratory metabolism of illuminated leaves

Guillaume Tcherkez; Gabriel Cornic; Richard Bligny; Elizabeth Gout; Jaleh Ghashghaie

Day respiration of illuminated C3 leaves is not well understood and particularly, the metabolic origin of the day respiratory CO2 production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using 12C/13C stable isotope techniques on illuminated leaves fed with 13C-enriched glucose or pyruvate. The 13CO2 production in light was measured using the deviation of the photosynthetic carbon isotope discrimination induced by the decarboxylation of the 13C-enriched compounds. Using different positional 13C-enrichments, it is shown that the Krebs cycle is reduced by 95% in the light and that the pyruvate dehydrogenase reaction is much less reduced, by 27% or less. Glucose molecules are scarcely metabolized to liberate CO2 in the light, simply suggesting that they can rarely enter glycolysis. Nuclear magnetic resonance analysis confirmed this view; when leaves are fed with 13C-glucose, leaf sucrose and glucose represent nearly 90% of the leaf 13C content, demonstrating that glucose is mainly directed to sucrose synthesis. Taken together, these data indicate that several metabolic down-regulations (glycolysis, Krebs cycle) accompany the light/dark transition and emphasize the decrease of the Krebs cycle decarboxylations as a metabolic basis of the light-dependent inhibition of mitochondrial respiration.


Functional Plant Biology | 2004

Theoretical considerations about carbon isotope distribution in glucose of C3 plants

Guillaume Tcherkez; Graham D. Farquhar; Franz W. Badeck; Jaleh Ghashghaie

The origin of the non-statistical intramolecular distribution of 13C in glucose of C3 plants is examined, including the role of the aldolisation of triose phosphates as proposed by Gleixner and Schmidt (1997). A modelling approach is taken in order to investigate the relationships between the intramolecular distribution of 13C in hexoses and the reactions of primary carbon metabolism. The model takes into account C-C bond-breaking reactions of the Calvin cycle and leads to a mathematical expression for the isotope ratios in hexoses in the steady state. In order to best fit the experimentally-observed intramolecular distribution, the values given by the model indicate that (i), the transketolase reaction fractionates against 13C by 4-7‰ and (ii), depending on the photorespiration rate used for estimations, the aldolase reaction discriminates in favour of 13C by 6‰ during fructose-1,6-bisphosphate production; an isotope discrimination by 2‰ against 13C is obtained when the photorespiration rate is high. Additionally, the estimated fractionations are sensitive to the flux of starch synthesis. Fructose produced from starch breakdown is suggested to be isotopically heavier than sucrose produced in the light, and so the balance between these two sources affects the average intramolecular distribution of glucose derived from stored carbohydrates. The model is also used to estimate photorespiratory and day respiratory fractionations that appear to both depend only weakly on the rate of ribulose-1,5-bisphosphate oxygenation.


New Phytologist | 2009

On the metabolic origin of the carbon isotope composition of CO2 evolved from darkened light‐acclimated leaves in Ricinus communis

Arthur Gessler; Guillaume Tcherkez; Oka Karyanto; Claudia Keitel; Juan Pedro Ferrio; Jaleh Ghashghaie; Jürgen Kreuzwieser; Graham D. Farquhar

The (13)C isotopic signature (delta(13)C) of CO(2) respired from plants is widely used to assess carbon fluxes and ecosystem functioning. There is, however, a lack of knowledge of the metabolic basis of the delta(13)C value of respired CO(2). To elucidate the physiological mechanisms driving (12)C/(13)C fractionation during respiration, the delta(13)C of respired CO(2) from dark-acclimated leaves during the night, from darkened leaves during the light period, and from stems and roots of Ricinus communis was analysed. The delta(13)C of potential respiratory substrates, the respiratory quotient and the activities of phosphoenolpyruvatecarboxylase (PEPc) and key respiratory enzymes were also measured. It is shown here that the CO(2) evolved from darkened light-acclimated leaves during the light period is (13)C-enriched, and that this correlates with malate accumulation in the light and rapid malate decarboxylation just after the onset of darkness. Whilst CO(2) evolved from leaves was generally (13)C-enriched (but to a lesser extent during the night), CO(2) evolved from stems and roots was depleted compared with the putative respiratory substrates; the difference was mainly caused by intensive PEPc-catalysed CO(2) refixation in stems and roots. These results provide a physiological explanation for short-term variations of delta(13)C in CO(2), illustrating the effects of variations of metabolic fluxes through different biochemical pathways.


Plant Cell and Environment | 2008

Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis

Arthur Gessler; Guillaume Tcherkez; Andreas D. Peuke; Jaleh Ghashghaie; Graham D. Farquhar

Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO(2) fixation. However, post-carboxylation fractionation can influence the diel variation of delta(13)C of leaf-exported organic matter and can cause inter-organ differences in delta(13)C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of delta(13)C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf water-soluble organic matter and phloem sap sugars with relatively (13)C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in delta(13)C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of delta(13)C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in (13)C as compared with the primary assimilates. This may contribute to the well-known--yet poorly explained--relative (13)C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use delta(13)C for assessing environmental effects like water availability on ratio of mole fractions of CO(2) inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO(2) fluxes at the ecosystem level.


Plant Physiology | 2004

Respiratory carbon metabolism following illumination in intact French bean leaves using 13C/12C isotope labeling

Salvador Nogués; Guillaume Tcherkez; Gabriel Cornic; Jaleh Ghashghaie

The origin of the carbon atoms in the CO2 respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using 13C/12C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO2 respired in the dark after a light period revealed that the CO2 was labeled, but the labeling level decreased progressively as the dark period increased. The pattern of disappearance depended on the amount of carbon fixed during the labeling and indicated that there were several pools of respiratory metabolites with distinct turnover rates. We demonstrate that the carbon recently assimilated during photosynthesis accounts for less than 50% of the carbon in the CO2 lost by dark respiration and that the proportion is not influenced by leaf starvation in darkness before the labeling. Therefore, most of the carbon released by dark respiration after illumination does not come from new photosynthates.


Planta | 1991

Effect of temperature on net CO2 assimilation and photosystem II quantum yield of electron transfer of French bean (Phaseolus vulgaris L.) leaves during drought stress

Gabriel Cornic; Jaleh Ghashghaie

The effect of leaf temperature on stomatal conductance and net CO2 uptake was studied on French bean (Phaseolus vulgaris L.) using either dehydrated attached leaves (25–40% water deficit) or cut leaves supplied with 10−4 M abscisic acid (ABA) solution to the transpiration stream. Decreasing leaf temperature caused stomatal opening and increased net CO2 uptake (which was close to zero at around 25° C) to a level identical to that of control leaves (without water deficit) at around 15° C. (i) The ABA effect on stomatal closure was modulated by temperature and, presumably, ABA is at least partly responsible for stomatal closure of french bean submitted to a drought stress. (ii) For leaf temperatures lower than 15° C, net CO2 uptake was no longer limited by water deficit even on very dehydrated leaves. This shows that dehydrated leaves retain a substantial part of their photosynthetic capacity which can be revealed at normal CO2 concentrations when stomata open at low temperature. In contrast to leaves fed with ABA, decreasing the O2 concentration from 21% to 1% O2 did not increase either the rate of net CO2 uptake or the thermal optimum for photosynthesis of dehydrated leaves. The quantum yield of PSII electron flow (measured by ΔF/Fm) was lower in 1% O2 than in 21% O2 for each leaf pretreatment given (non-dehydrated leaves, dehydrated leaves, and leaves fed with ABA) even within a temperature range in which leaf photosynthesis at normal CO2 concentration was the same in these two O2 concentrations. It is concluded that this probably indicates an heterogeneity of photosynthesis, since this difference in quantum yield disappears when using high CO2 concentrations during measurements.


New Phytologist | 2009

Metabolic origin of the δ13C of respired CO2 in roots of Phaseolus vulgaris

Camille Bathellier; Guillaume Tcherkez; Richard Bligny; Elizabeth Gout; Gabriel Cornic; Jaleh Ghashghaie

Root respiration is a major contributor to soil CO2 efflux, and thus an important component of ecosystem respiration. But its metabolic origin, in relation to the carbon isotope composition (delta13C), remains poorly understood. Here, 13C analysis was conducted on CO2 and metabolites under typical conditions or under continuous darkness in French bean (Phaseolus vulgaris) roots. 13C contents were measured either under natural abundance or following pulse-chase labeling with 13C-enriched glucose or pyruvate, using isotope ratio mass spectrometer (IRMS) and nuclear magnetic resonance (NMR) techniques. In contrast to leaves, no relationship was found between the respiratory quotient and the delta13C of respired CO2, which stayed constant at a low value (c. -27.5 per thousand) under continuous darkness. With labeling experiments, it is shown that such a pattern is explained by the 13C-depleting effect of the pentose phosphate pathway; and the involvement of the Krebs cycle fueled by either the glycolytic input or the lipid/protein recycling. The anaplerotic phosphoenolpyruvate carboxylase (PEPc) activity sustained glutamic acid (Glu) synthesis, with no net effect on respired CO2. These results indicate that the root delta13C signal does not depend on the availability of root respiratory substrates and it is thus plausible that, unless the 13C photosynthetic fractionation varies at the leaf level, the root delta13C signal hardly changes under a range of natural environmental conditions.


Functional Plant Biology | 2001

Carbon isotope discrimination during photosynthesis and dark respiration in intact leaves of Nicotiana sylvestris: comparisons between wild type and mitochondrial mutant plants

Muriel Duranceau; Jaleh Ghashghaie; E. Brugnoli

Leaf gas-exchange, carbon isotope discrimination (D) during photosynthesis, carbon isotope composition (d13 C) of leaf dry matter, leaf carbohydrates and ‰ d13 C of dark respiratory CO 2 were measured both in wild type (WT) and in a respiratory mutant of Nicotiana sylvestris Spegazz. plants. The mutation caused a dysfunction of complex I of the respiratory chain which has been described in detail by Gutierres et al. 1997, PNAS, 94, 3436. The aim of this work was to verify if this mutation has an influence on carbon isotope discrimination during photosynthesis and dark respiration. Another objective was to study the possible effect of respiratory fractionation on the isotopic composition of dry matter and on the discrimination measured on-line, in comparison with the expected D based on the model developed by Farquhar et al. 1982, AJPP, 9, 121. On-line D measured on leaves during photosynthesis was lower in the mutants (16.5‰ 0.9) than in the WT (20.1‰ 0.6), mainly due to lower conductance to CO 2 diffusion (both across stomatal pores and in the gaseous and liquid phases across the mesophyll) in the mutants. No statistically significant difference in the fractionation during dark respiration was observed between WT and mutant plants. However, respiratory CO 2 was enriched in 13 C compared to sucrose and glucose by about 2–3 and 2.5–4‰, respectively. The enrichment in 13 C (about 2‰) observed in leaf metabolites and leaf organic matter in the mutants compared to the WT can be explained by differences in .during photosynthesis. However, the fractionation in the whole-leaf organic matter of both WT and mutant plants was higher (more depleted in 13C) than expected based on the .values obtained with on-line measurements during photosynthesis. The observed discrimination during dark respiration, releasing 13 C-enriched CO 2 , may partly explain the higher fractionation in the remaining leaf organic matter compared to the overall discrimination during photosynthesis, as measured on-line.


Rapid Communications in Mass Spectrometry | 2009

Preparation of starch and soluble sugars of plant material for the analysis of carbon isotope composition: a comparison of methods

Andreas Richter; Wolfgang Wanek; Roland A. Werner; Jaleh Ghashghaie; Maya Jäggi; Arthur Gessler; E. Brugnoli; Elena Hettmann; Sabine Göttlicher; Yann Salmon; Camille Bathellier; Naomi Kodama; Salvador Nogués; Astrid R. B. Søe; Fillip Volders; Karin Sörgel; Andreas Blöchl; Rolf T. W. Siegwolf; Nina Buchmann; Gerd Gleixner

Starch and soluble sugars are the major photosynthetic products, and their carbon isotope signatures reflect external versus internal limitations of CO(2) fixation. There has been recent renewed interest in the isotope composition of carbohydrates, mainly for use in CO(2) flux partitioning studies at the ecosystem level. The major obstacle to the use of carbohydrates in such studies has been the lack of an acknowledged method to isolate starch and soluble sugars for isotopic measurements. We here report on the comparison and evaluation of existing methods (acid and enzymatic hydrolysis for starch; ion-exchange purification and compound-specific analysis for sugars). The selectivity and reproducibility of the methods were tested using three approaches: (i) an artificial leaf composed of a mixture of isotopically defined compounds, (ii) a C(4) leaf spiked with C(3) starch, and (iii) two natural plant samples (root, leaf). Starch preparation methods based on enzymatic or acid hydrolysis did not yield similar results and exhibited contaminations by non-starch compounds. The specificity of the acidic hydrolysis method was especially low, and we therefore suggest terming these preparations as HCl-hydrolysable carbon, rather than starch. Despite being more specific, enzyme-based methods to isolate starch also need to be further optimized to increase specificity. The analysis of sugars by ion-exchange methods (bulk preparations) was fast but produced more variable isotope compositions than compound-specific methods. Compound-specific approaches did not in all cases correctly reproduce the target values, mainly due to unsatisfactory separation of sugars and background contamination. Our study demonstrates that, despite their wide application, methods for the preparation of starch and soluble sugars for the analysis of carbon isotope composition are not (yet) reliable enough to be routinely applied and further research is urgently needed to resolve the identified problems.

Collaboration


Dive into the Jaleh Ghashghaie's collaboration.

Top Co-Authors

Avatar

Guillaume Tcherkez

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franz-W. Badeck

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Camille Bathellier

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuelle Lamade

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franz W. Badeck

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Researchain Logo
Decentralizing Knowledge