James A. Birchler
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James A. Birchler.
Trends in Genetics | 2003
Thomas C. Osborn; J. Chris Pires; James A. Birchler; Donald L. Auger; Z. Jeffery Chen; Hyeon Se Lee; Luca Comai; Andreas Madlung; R. W. Doerge; Vincent Colot; Robert A. Martienssen
Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.
Molecular Cell | 2002
Manika Pal-Bhadra; Utpal Bhadra; James A. Birchler
Two types of transgene silencing were found for the Alcohol dehydrogenase (Adh) transcription unit. Transcriptional gene silencing (TGS) is Polycomb dependent and occurs when Adh is driven by the white eye color gene promoter. Full-length Adh transgenes are silenced posttranscriptionally at high copy number or by a pulsed increase over a threshold. The posttranscriptional gene silencing (PTGS) exhibits molecular hallmarks typical of RNA interference (RNAi), including the production of 21--25 bp length sense and antisense RNAs homologous to the silenced RNA. Mutations in piwi, which belongs to a gene family with members required for RNAi, block PTGS and one aspect of TGS, indicating a connection between the two types of silencing.
The Plant Cell | 2003
James A. Birchler; Donald L. Auger; Nicole C. Riddle
Heterosis, or hybrid vigor, refers to the phenomenon that progeny of diverse inbred varieties exhibit greater biomass, speed of development, and fertility than the better of the two parents ([Figure 1][1]). This phenomenon has been exploited extensively in crop production and has been a powerful
The Plant Cell | 2007
James A. Birchler; Reiner A. Veitia
The concept of genetic balance traces back to the early days of genetics. Additions or subtractions of single chromosomes to the karyotype (aneuploidy) produced greater impacts on the phenotype than whole-genome changes (ploidy). Studies on changes in gene expression in aneuploid and ploidy series
Proceedings of the National Academy of Sciences of the United States of America | 2012
James A. Birchler; Reiner A. Veitia
We summarize, in this review, the evidence that genomic balance influences gene expression, quantitative traits, dosage compensation, aneuploid syndromes, population dynamics of copy number variants and differential evolutionary fate of genes after partial or whole-genome duplication. Gene balance effects are hypothesized to result from stoichiometric differences among members of macromolecular complexes, the interactome, and signaling pathways. The implications of gene balance are discussed.
New Phytologist | 2010
James A. Birchler; Reiner A. Veitia
The gene balance hypothesis states that the stoichiometry of members of multisubunit complexes affects the function of the whole because of the kinetics and mode of assembly. Gene regulatory mechanisms also would be governed by these principles. Here, we review the impact of this concept with regard to the effects on the genetics of quantitative traits, the fate of duplication of genes following polyploidization events or segmental duplication, the basis of aneuploid syndromes, the constraints on cis and trans variation in gene regulation and the potential involvement in hybrid incompatibilities.
Trends in Genetics | 2008
Reiner A. Veitia; Samuel Bottani; James A. Birchler
There is increasing evidence suggesting that stoichiometric imbalances in macromolecular complexes and in signaling/transcriptional networks are a source of dosage-dependent phenotypes. Such alterations can result from total or partial aneuploidy, gene copy number variants or regulatory alterations. Thus, some gene balance is required to ensure a normal function. This balance also dictates which genes are preferentially over- or underretained after single gene, segmental or whole genome duplications. Here, we review the mechanisms leading to dosage effects and compensation at the transcriptional and translational levels. Moreover, we propose that the involvement of a protein in a complex can affect its stability: formation of complexes might mask degradation signals in the monomers leading to their preferential degradation when in excess, alleviating dosage imbalances.
Science | 1994
Mei Guo; James A. Birchler
The reduction in vigor of aneuploids was classically thought to be due to the imbalance of gene products expressed from the varied chromosome relative to those from the remainder of the genome. In this study, the dosage of chromosomal segments was varied, but the transcript level of most genes encoded therein showed compensation for the number of copies of the gene. Genes whose dosage was not altered were affected by aneuploidy of unlinked chromosomal segments. The phenotypic effects of aneuploidy and of a substantial fraction of quantitative variation are hypothesized to be the consequence of an altered dosage-sensitive regulatory system.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Lyza G. Maron; Claudia Teixeira Guimarães; Matias Kirst; Patrice S. Albert; James A. Birchler; Peter J. Bradbury; Edward S. Buckler; Alison E. Coluccio; Tatiana V. Danilova; David Kudrna; Jurandir V. Magalhaes; Miguel A. Piñeros; Michael C. Schatz; Rod A. Wing; Leon V. Kochian
Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.
PLOS Genetics | 2009
Thomas K. Wolfgruber; Anupma Sharma; Kevin L. Schneider; Patrice S. Albert; Dal-Hoe Koo; Jinghua Shi; Zhi Gao; Fangpu Han; Hye-Ran Lee; Ronghui Xu; Jamie Allison; James A. Birchler; Jiming Jiang; R. Kelly Dawe; Gernot G. Presting
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.