Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Estes is active.

Publication


Featured researches published by James A. Estes.


Science | 2011

Trophic Downgrading of Planet Earth

James A. Estes; John Terborgh; Justin S. Brashares; Mary E. Power; Joel Berger; William J. Bond; Stephen R. Carpenter; Timothy E. Essington; Robert D. Holt; Jeremy B. C. Jackson; Robert J. Marquis; Lauri Oksanen; Tarja Oksanen; Robert T. Paine; Ellen K. Pikitch; William J. Ripple; Stuart A. Sandin; Marten Scheffer; Thomas W. Schoener; Jonathan B. Shurin; A. R. E. Sinclair; Michael E. Soulé; Risto Virtanen; David A. Wardle

Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind’s most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.


BioScience | 1996

Challenges in the quest for keystones

Mary E. Power; David Tilman; James A. Estes; Bruce A. Menge; William J. Bond; L. Scott Mills; Gretchen C. Daily; Juan Carlos Castilla; Jane Lubchenco; Robert T. Paine

Mary E. Power is a professor in the Department of Integrative Biology, University of California, Berkeley, CA 94720. David Tilman is a professor in the Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108. James A. Estes is a wildlife biologist in the National Biological Service, Institute of Marine Science, University of California, Santa Cruz, CA 95064. Bruce A. Menge is a professor in the Department of Zoology, Oregon State University, Corvallis, OR 97331. William J. Bond is a professor doctor in the Department of Botany, University of Cape Town, Rondebosch 7700 South Africa. L. Scott Mills is an assistant professor in the Wildlife Biology Program, School of Forestry, University of Montana, Missoula, MT 59812. Gretchen Daily is Bing Interdisciplinary Research Scientist, Department of Biological Science, Stanford University, Stanford, CA 94305. Juan Carlos Castilla is a full professor and marine biology head in Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Jane Lubchenco is a distinguished professor in the Department of Zoology, Oregon State University, Corvallis, OR 97331. Robert T. Paine is a professor in the Department of Zoology, NJ-15, University of Washington, Seattle, WA 98195. ? 1996 American Institute of Biological Sciences. A keystone species is


Environmental Conservation | 2002

Kelp forest ecosystems: biodiversity, stability, resilience and future

Robert S. Steneck; Michael H. Graham; Bruce J. Bourque; Debbie Corbett; Jon M. Erlandson; James A. Estes; Mia J. Tegner

Kelp forests are phyletically diverse, structurally complex and highly productive components of coldwater rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40–60° latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2–3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The large-scale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.


Science | 2014

Status and Ecological Effects of the World’s Largest Carnivores

William J. Ripple; James A. Estes; Robert L. Beschta; Christopher C. Wilmers; Euan G. Ritchie; Mark Hebblewhite; Joel Berger; Bodil Elmhagen; Mike Letnic; Michael Paul Nelson; Oswald J. Schmitz; Douglas W. Smith; Arian D. Wallach; Aaron J. Wirsing

Background The largest terrestrial species in the order Carnivora are wide-ranging and rare because of their positions at the top of food webs. They are some of the world’s most admired mammals and, ironically, some of the most imperiled. Most have experienced substantial population declines and range contractions throughout the world during the past two centuries. Because of the high metabolic demands that come with endothermy and large body size, these carnivores often require large prey and expansive habitats. These food requirements and wide-ranging behavior often bring them into conflict with humans and livestock. This, in addition to human intolerance, renders them vulnerable to extinction. Large carnivores face enormous threats that have caused massive declines in their populations and geographic ranges, including habitat loss and degradation,persecution, utilization, and depletion of prey. We highlight how these threats can affect theconservation status and ecological roles of this planet’s 31 largest carnivores. Ecologically important carnivores. Seven species of large carnivores with documented ecological effects involving (A) “tri-trophic cascades” from large carnivores to prey to plants, (B) “mesopredator cascades” from large carnivores to mesopredators to prey of mesopredators, and (C) both tri-trophic and mesopredator cascades. [Photo credits: sea otter (N. Smith), puma (W. Ripple), lion (K. Abley), leopard (A. Dey), Eurasianlynx (B. Elmhagen), dingo (A. McNab), gray wolf (D. Mclaughlin)] Advances Based on empirical studies, trophic cascades have been documented for 7 of the 31 largest mammalian carnivores (not including pinnipeds). For each of these species (see figure), human actions have both caused declines and contributed to recovery, providing “natural experiments” for quantifying their effects on food-web and community structure. Large carnivores deliver economic and ecosystem services via direct and indirect pathways that help maintain mammal, avian, invertebrate,and herpetofauna abundance or richness. Further, they affect other ecosystem processes and conditions, such as scavenger subsidies, disease dynamics, carbon storage, stream morphology, and crop production. The maintenance or recovery of ecologically effective densities of large carnivores is an important tool for maintaining the structure and function of diverse ecosystems. Outlook Current ecological knowledge indicates that large carnivores are necessary for the maintenanceof biodiversity and ecosystem function. Human actions cannot fully replace the role of large carnivores. Additionally, the future of increasing human resource demands and changing climate will affect biodiversity and ecosystem resiliency. These facts, combined with the importance of resiliente cosystems, indicate that large carnivores and their habitats should be maintained and restored wherever possible. Preventing the extinction of these species and the loss of their irreplaceable ecological function and importance will require novel, bold, and deliberate actions. We propose a Global Large Carnivore Initiative to coordinate local, national, and international research, conservation, and policy. Preserving Predators Large-bodied animals play essential roles in ecosystem structuring and stability through both indirect and direct trophic effects. In recent times, humans have disrupted this trophic structure through both habitat destruction and active extirpation of large predators, resulting in large declines in numbers and vast contractions in their geographic ranges. Ripple et al. (10.1126/science.1241484; see the Perspective by Roberts) review the status, threats, and ecological importance of the 31 largest mammalian carnivores globally. These species are responsible for a suite of direct and indirect stabilizing effects in ecosystems. Current levels of decline are likely to result in ecologically ineffective population densities and can lead to ecosystem instability. The preservation of large carnivores can be challenging because of their need for large ranges and their potential for human conflict. However, the authors demonstrate that the preservation of large carnivores is ecologically important and that the need for conservation action is immediate, given the severity of the threats they face. Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth’s largest carnivores and all that depends upon them, including humans.


Science | 1974

Sea otters: their role in structuring nearshore communities.

James A. Estes; John F. Palmisano

A comparison of western Aleutian Islands with and without sea otter populations shows that this species is important in determining littoral and sublittoral community structure. Sea otters control herbivorous invertebrate populations. Removal of sea otters causes increased herbivory and ultimately results in the destruction of macrophyte associations. The observations suggest that sea otter reestablishment indirectly affects island fauna associated with macrophyte primary productivity.


Ecological Monographs | 1995

SEA OTTERS AND KELP FORESTS IN ALASKA: GENERALITY AND VARIATION IN A COMMUNITY ECOLOGICAL PARADIGM'

James A. Estes; David O. Duggins

Multiscale patterns of spatial and temporal variation in density and popu- lation structure were used to evaluate the generality of a three-trophic-level cascade among sea otters (Enhydra lutris), invertebrate herbivores, and macroalgae in Alaska. The paradigm holds that where sea otters occur herbivores are rare and plants are abundant, whereas when sea otters are absent herbivores are relatively common and plants are rare. Spatial patterns were based on 20 randomly placed quadrats at 153 randomly selected sites distributed among five locations with and four locations without sea otters. Both sea urchin and kelp abundance differed significantly among locations with vs. without sea otters in the Aleutian Islands and southeast Alaska. There was little (Aleutian Islands) or no (southeast Alaska) overlap between sites with and without sea otters, in plots of kelp density against urchin biomass. Despite intersite variation in the abundance of kelps and herbivores, these analyses demonstrate that sea otter predation has a predictable and broadly generalizable influence on the structure of Alaskan kelp forests. The percent cover of algal turf and suspension feeder assemblages also differed significantly (although less dramatically) between locations with and without sea otters. Temporal variation in community structure was assessed over periods of from 3 to 15 yr at sites in the Aleutian Islands and southeast Alaska where sea otters were 1) continuously present, 2) continuously absent, or 3) becoming reestablished because of natural range expansion. Kelp and sea urchin abundance remained largely unchanged at most sites where sea otters were continuously present or absent, the one exception being at Torch Bay (southeast Alaska), where kelp abundance varied significantly through time and urchin abundance varied significantly among sites because of episodic and patchy disturbances. In contrast, kelp and sea urchin abundances changed significantly, and in the expected directions, at sites that were being recolonized by sea otters. Sea urchin biomass declined by 50% in the Aleutian Islands and by nearly 100% in southeast Alaska following the spread of sea otters into previously unoccupied habitats. In response to these different rates and magnitudes of urchin reduction by sea otter predation, increases in kelp abundance were abrupt and highly significant in southeast Alaska but much smaller and slower over similar time periods in the Aleutian Islands. The different kelp colonization rates between southeast Alaska and the Aleutian Islands appear to be caused by large-scale differences in echinoid recruitment coupled with size- selective predation by sea otters for larger urchins. The length of urchin jaws (correlated with test diameter, r2 = 0.968) in sea otter scats indicates that sea urchins <15-20 mm test diameter are rarely eaten by foraging sea otters. Sea urchin populations in the Aleutian Islands included high densities of small individuals (<20 mm test diameter) at all sites and during all years sampled, whereas in southeast Alaska similarly sized urchins were absent from most populations during most years. Small (<30-35 mm test diameter) tetracycline- marked urchins in the Aleutian Islands grew at a maximum rate of -10 mm/yr; thus the population must have significant recruitment annually, or at least every several years. In contrast, echinoid recruitment in southeast Alaska was more episodic, with many years to perhaps decades separating significant events. Our findings help explain regional differences in recovery rates of kelp forests following recolonization by sea otters.


Science | 1989

Magnification of secondary production by kelp detritus in coastal marine ecosystems.

David O. Duggins; Charles A. Simenstad; James A. Estes

Kelps are highly productive seaweeds found along most temperate latitude coastlines, but the fate and importance of kelp production to nearshore ecosystems are largely unknown. The trophic role of kelp-derived carbon in a wide range of marine organisms was assessed by a natural experiment. Growth rates of benthic suspension feeders were greatly increased in the presence of organic detritus (particulate and dissolved) originating from large benthic seaweeds (kelps). Stable carbon isotope analysis confirmed that kelp-derived carbon is found throughout the nearshore food web.


Journal of Heredity | 2009

Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species

David Haussler; Stephen J. O'Brien; Oliver A. Ryder; F. Keith Barker; Michele Clamp; Andrew J. Crawford; Robert Hanner; Olivier Hanotte; Warren E. Johnson; Jimmy A. McGuire; Webb Miller; Robert W. Murphy; William J. Murphy; Frederick H. Sheldon; Barry Sinervo; Byrappa Venkatesh; E. O. Wiley; Fred W. Allendorf; George Amato; C. Scott Baker; Aaron M. Bauer; Albano Beja-Pereira; Eldredge Bermingham; Giacomo Bernardi; Cibele R. Bonvicino; Sydney Brenner; Terry Burke; Joel Cracraft; Mark Diekhans; Scott V. Edwards

The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and 24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in costs and increase in sequencing efficiency, with concomitant development of improved annotation technology and, therefore, propose to create a collection of tissue and DNA specimens for 10,000 vertebrate species specifically designated for whole-genome sequencing in the very near future. For this purpose, we, the Genome 10K Community of Scientists (G10KCOS), will assemble and allocate a biospecimen collection of some 16,203 representative vertebrate species spanning evolutionary diversity across living mammals, birds, nonavian reptiles, amphibians, and fishes (ca. 60,000 living species). In this proposal, we present precise counts for these 16,203 individual species with specimens presently tagged and stipulated for DNA sequencing by the G10KCOS. DNA sequencing has ushered in a new era of investigation in the biological sciences, allowing us to embark for the first time on a truly comprehensive study of vertebrate evolution, the results of which will touch nearly every aspect of vertebrate biological enquiry.


Science | 2015

Marine defaunation: Animal loss in the global ocean

Douglas J. McCauley; Malin L. Pinsky; Stephen R. Palumbi; James A. Estes; Francis H. Joyce; Robert R. Warner

Marine animals are disappearing, too The loss of animal species in terrestrial environments has been well documented and is continuing. Loss of species in marine environments has been slower than in terrestrial systems, but appears to be increasing rapidly. McCauley et al. review the recent patterns of species decline and loss in marine environments. Though they note many worrying declines, they also highlight approaches that might allow us to prevent the type of massive defaunation that has occurred on land. Science, this issue 10.1126/science.1255641 BACKGROUND Comparing patterns of terrestrial and marine defaunation helps to place human impacts on marine fauna in context and to navigate toward recovery. Defaunation began in earnest tens of thousands of years later in the oceans than it did on land. Although defaunation has been less severe in the oceans than on land, our effects on marine animals are increasing in pace and impact. Humans have caused few complete extinctions in the sea, but we are responsible for many ecological, commercial, and local extinctions. Despite our late start, humans have already powerfully changed virtually all major marine ecosystems. ADVANCES Humans have profoundly decreased the abundance of both large (e.g., whales) and small (e.g., anchovies) marine fauna. Such declines can generate waves of ecological change that travel both up and down marine food webs and can alter ocean ecosystem functioning. Human harvesters have also been a major force of evolutionary change in the oceans and have reshaped the genetic structure of marine animal populations. Climate change threatens to accelerate marine defaunation over the next century. The high mobility of many marine animals offers some increased, though limited, capacity for marine species to respond to climate stress, but it also exposes many species to increased risk from other stressors. Because humans are intensely reliant on ocean ecosystems for food and other ecosystem services, we are deeply affected by all of these forecasted changes. Three lessons emerge when comparing the marine and terrestrial defaunation experiences: (i) today’s low rates of marine extinction may be the prelude to a major extinction pulse, similar to that observed on land during the industrial revolution, as the footprint of human ocean use widens; (ii) effectively slowing ocean defaunation requires both protected areas and careful management of the intervening ocean matrix; and (iii) the terrestrial experience and current trends in ocean use suggest that habitat destruction is likely to become an increasingly dominant threat to ocean wildlife over the next 150 years. OUTLOOK Wildlife populations in the oceans have been badly damaged by human activity. Nevertheless, marine fauna generally are in better condition than terrestrial fauna: Fewer marine animal extinctions have occurred; many geographic ranges have shrunk less; and numerous ocean ecosystems remain more wild than terrestrial ecosystems. Consequently, meaningful rehabilitation of affected marine animal populations remains within the reach of managers. Human dependency on marine wildlife and the linked fate of marine and terrestrial fauna necessitate that we act quickly to slow the advance of marine defaunation. Timeline (log scale) of marine and terrestrial defaunation. The marine defaunation experience is much less advanced, even though humans have been harvesting ocean wildlife for thousands of years. The recent industrialization of this harvest, however, initiated an era of intense marine wildlife declines. If left unmanaged, we predict that marine habitat alteration, along with climate change (colored bar: IPCC warming), will exacerbate marine defaunation. Marine defaunation, or human-caused animal loss in the oceans, emerged forcefully only hundreds of years ago, whereas terrestrial defaunation has been occurring far longer. Though humans have caused few global marine extinctions, we have profoundly affected marine wildlife, altering the functioning and provisioning of services in every ocean. Current ocean trends, coupled with terrestrial defaunation lessons, suggest that marine defaunation rates will rapidly intensify as human use of the oceans industrializes. Though protected areas are a powerful tool to harness ocean productivity, especially when designed with future climate in mind, additional management strategies will be required. Overall, habitat degradation is likely to intensify as a major driver of marine wildlife loss. Proactive intervention can avert a marine defaunation disaster of the magnitude observed on land.


Science | 1978

Aleuts, Sea Otters and Alternate Stable-State Communities

Charles A. Simenstad; James A. Estes; Karl W. Kenyon

Reexamination of stratified faunal components of a prehistoric Aleut midden excavated on Amchitka Island, Alaska, indicates that Aleut prey items changed dramatically during 2500 years of aboriginal occupation. Recent ecological studies in the Aleutian Islands have shown the concurrent existence of two alternate stable nearshore communities, one dominated by macroalgae, the other by epibenthic herbivores, which are respectively maintained by the presence or absence of dense sea otter populations. Thus, rather than cultural shifts in food preference, the changes in Aleut prey were probably the result of local overexploitation of sea otters by aboriginal Aleuts.

Collaboration


Dive into the James A. Estes's collaboration.

Top Co-Authors

Avatar

Daniel F. Doak

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

M. Tim Tinker

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James L. Bodkin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine Ralls

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar

M.T. Tinker

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mary E. Power

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Monson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Brenda Konar

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge