Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Fraser is active.

Publication


Featured researches published by James A. Fraser.


Eukaryotic Cell | 2007

Evolution of the mating type locus: Insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii

James A. Fraser; Jason E. Stajich; Eric J. Tarcha; Garry T. Cole; Diane O. Inglis; Anita Sil; Joseph Heitman

ABSTRACT Sexual reproduction of fungi is governed by the mating type (MAT) locus, a specialized region of the genome encoding key transcriptional regulators that direct regulatory networks to specify cell identity and fate. Knowledge of MAT locus structure and evolution has been considerably advanced in recent years as a result of genomic analyses that enable the definition of MAT locus sequences in many species as well as provide an understanding of the evolutionary plasticity of this unique region of the genome. Here, we extend this analysis to define the mating type locus of three dimorphic primary human fungal pathogens, Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii, using genomic analysis, direct sequencing, and bioinformatics. These studies provide evidence that all three species possess heterothallic bipolar mating type systems, with isolates encoding either a high-mobility-group (HMG) domain or an α-box transcriptional regulator. These genes are intact in all loci examined and have not been subject to loss or decay, providing evidence that the loss of fertility upon passage in H. capsulatum is not attributable to mutations at the MAT locus. These findings also suggest that an extant sexual cycle remains to be defined in both Coccidioides species, in accord with population genetic evidence. Based on these MAT sequences, a facile PCR test was developed that allows the mating type to be rapidly ascertained. Finally, these studies highlight the evolutionary forces shaping the MAT locus, revealing examples in which flanking genes have been inverted or subsumed and incorporated into an expanding MAT locus, allowing us to propose an expanded model for the evolution of the MAT locus in the phylum Ascomycota.


Nature | 2005

Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak.

James A. Fraser; Steven S. Giles; Emily C. Wenink; Scarlett Geunes-Boyer; Jo Rae Wright; Stephanie Diezmann; Andria Allen; Jason E. Stajich; Fred S. Dietrich; John R. Perfect; Joseph Heitman

Genealogy can illuminate the evolutionary path of important human pathogens. In some microbes, strict clonal reproduction predominates, as with the worldwide dissemination of Mycobacterium leprae, the cause of leprosy. In other pathogens, sexual reproduction yields clones with novel attributes, for example, enabling the efficient, oral transmission of the parasite Toxoplasma gondii. However, the roles of clonal or sexual propagation in the origins of many other microbial pathogen outbreaks remain unknown, like the recent fungal meningoencephalitis outbreak on Vancouver Island, Canada, caused by Cryptococcus gattii. Here we show that the C. gattii outbreak isolates comprise two distinct genotypes. The majority of isolates are hypervirulent and have an identical genotype that is unique to the Pacific Northwest. A minority of the isolates are significantly less virulent and share an identical genotype with fertile isolates from an Australian recombining population. Genotypic analysis reveals evidence of sexual reproduction, in which the majority genotype is the predicted offspring. However, instead of the classic a–α sexual cycle, the majority outbreak clone appears to have descended from two α mating-type parents. Analysis of nuclear content revealed a diploid environmental isolate homozygous for the major genotype, an intermediate produced during same-sex mating. These studies demonstrate how cryptic same-sex reproduction can enable expansion of a human pathogen to a new geographical niche and contribute to the ongoing production of infectious spores. This has implications for the emergence of other microbial pathogens and inbreeding in host range expansion in the fungal and other kingdoms.


Nature Reviews Microbiology | 2005

Deciphering the Model Pathogenic Fungus Cryptococcus Neoformans

Alexander Idnurm; Yong Sun Bahn; Kirsten Nielsen; Xiaorong Lin; James A. Fraser; Joseph Heitman

Cryptococcus neoformans is a basidiomycete fungal pathogen of humans that has diverged considerably from other model fungi such as Neurospora crassa, Aspergillus nidulans, Saccharomyces cerevisiae and the common human fungal pathogen Candida albicans. The recent completion of the genome sequences of two related C. neoformans strains and the ongoing genome sequencing of three other divergent Cryptococcus strains with different virulence phenotypes and environmental distributions should improve our understanding of this important pathogen. We discuss the biology of C. neoformans in light of this genomic data, with a special emphasis on the role that evolution and sexual reproduction have in the complex relationships of the fungus with the environment and the host.


Eukaryotic Cell | 2003

Recapitulation of the Sexual Cycle of the Primary Fungal Pathogen Cryptococcus neoformans var. gattii: Implications for an Outbreak on Vancouver Island, Canada

James A. Fraser; Ryan Subaran; Connie B. Nichols; Joseph Heitman

ABSTRACT Cryptococcus neoformans is a human fungal pathogen that exists as three distinct varieties or sibling species: the predominantly opportunistic pathogens C. neoformans var. neoformans (serotype D) and C. neoformans var. grubii (serotype A) and the primary pathogen C. neoformans var. gattii (serotypes B and C). While serotypes A and D are cosmopolitan, serotypes B and C are typically restricted to tropical regions. However, serotype B isolates of C. neoformans var. gattii have recently caused an outbreak on Vancouver Island in Canada, highlighting the threat of this fungus and its capacity to infect immunocompetent individuals. Here we report a large-scale analysis of the mating abilities of serotype B and C isolates from diverse sources and identify unusual strains that mate robustly and are suitable for further genetic analysis. Unlike most isolates, which are of both the a and α mating types but are predominantly sterile, the majority of the Vancouver outbreak strains are exclusively of the α mating type and the majority are fertile. In an effort to enhance mating of these isolates, we identified and disrupted the CRG1 gene encoding the GTPase-activating protein involved in attenuating pheromone response. crg1 mutations dramatically increased mating efficiency and enabled mating with otherwise sterile isolates. Our studies provide a genetic and molecular foundation for further studies of this primary pathogen and reveal that the Vancouver Island outbreak may be attributable to a recent recombination event.


Eukaryotic Cell | 2002

Mating-type locus of Cryptococcus neoformans: A step in the evolution of sex chromosomes

Klaus B. Lengeler; Deborah S. Fox; James A. Fraser; Andria Allen; Keri Forrester; Fred S. Dietrich; Joseph Heitman

ABSTRACT The sexual development and virulence of the fungal pathogen Cryptococcus neoformans is controlled by a bipolar mating system determined by a single locus that exists in two alleles, α and a. The α and a mating-type alleles from two divergent varieties were cloned and sequenced. The C. neoformans mating-type locus is unique, spans >100 kb, and contains more than 20 genes. MAT-encoded products include homologs of regulators of sexual development in other fungi, pheromone and pheromone receptors, divergent components of a MAP kinase cascade, and other proteins with no obvious function in mating. The α and a alleles of the mating-type locus have extensively rearranged during evolution and strain divergence but are stable during genetic crosses and in the population. The C. neoformans mating-type locus is strikingly different from the other known fungal mating-type loci, sharing features with the self-incompatibility systems and sex chromosomes of algae, plants, and animals. Our study establishes a new paradigm for mating-type loci in fungi with implications for the evolution of cell identity and self/nonself recognition.


PLOS Biology | 2004

Convergent Evolution of Chromosomal Sex-Determining Regions in the Animal and Fungal Kingdoms

James A. Fraser; Stephanie Diezmann; Ryan Subaran; Andria Allen; Klaus B. Lengeler; Fred S. Dietrich; Joseph Heitman

Sexual identity is governed by sex chromosomes in plants and animals, and by mating type (MAT) loci in fungi. Comparative analysis of the MAT locus from a species cluster of the human fungal pathogen Cryptococcus revealed sequential evolutionary events that fashioned this large, highly unusual region. We hypothesize that MAT evolved via four main steps, beginning with acquisition of genes into two unlinked sex-determining regions, forming independent gene clusters that then fused via chromosomal translocation. A transitional tripolar intermediate state then converted to a bipolar system via gene conversion or recombination between the linked and unlinked sex-determining regions. MAT was subsequently subjected to intra- and interallelic gene conversion and inversions that suppress recombination. These events resemble those that shaped mammalian sex chromosomes, illustrating convergent evolution in sex-determining structures in the animal and fungal kingdoms.


PLOS Genetics | 2014

Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

Guilhem Janbon; Kate L. Ormerod; Damien Paulet; Edmond J. Byrnes; Vikas Yadav; Gautam Chatterjee; Nandita Mullapudi; Chung Chau Hon; R. Blake Billmyre; François Brunel; Yong Sun Bahn; Weidong Chen; Yuan Chen; Eve W. L. Chow; Jean Yves Coppée; Anna Floyd-Averette; Claude Gaillardin; Kimberly J. Gerik; Jonathan M. Goldberg; Sara Gonzalez-Hilarion; Sharvari Gujja; Joyce L. Hamlin; Yen-Ping Hsueh; Giuseppe Ianiri; Steven J.M. Jones; Chinnappa D. Kodira; Lukasz Kozubowski; Woei Lam; Marco A. Marra; Larry D. Mesner

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Nature | 1968

Repeated Freeze–Thaw Cycles in Cryosurgery

William Gill; James A. Fraser; David C. Carter

FREEZING temperatures have been in use in surgery for many years as a means of local tissue destruction. Recent experimental investigation has shown that such freezing will give a reproducible area of cell death provided factors such as the temperature and the duration of application are constant. Additional virtues have been claimed for repeated, as opposed to single, freeze–thaw cycles in terms of the degree of tissue destruction. In his discussion on cryotherapy for oral cancer Gage1 states “repetition of the freeze will increase the certainty of cell destruction” and similar comments2,3 are frequent in the literature.


Mbio | 2011

Genome Variation in Cryptococcus gattii, an Emerging Pathogen of Immunocompetent Hosts

Cletus D'souza; Jim Kronstad; Gregory A. Taylor; René L. Warren; Man Saint Yuen; Guanggan Hu; W. H. Jung; Anita Sham; Sarah Kidd; Kristin L. Tangen; Nancy Lee; T. Zeilmaker; J. Sawkins; Graham McVicker; Sohrab P. Shah; Sante Gnerre; Allison D. Griggs; Qiandong Zeng; Karen H. Bartlett; Wenjun Li; Xiao-Fan Wang; Joseph Heitman; Jason E. Stajich; James A. Fraser; Wieland Meyer; Dee Carter; Jacquie Schein; Martin Krzywinski; Kyung J. Kwon-Chung; Ashok Varma

ABSTRACT Cryptococcus gattii recently emerged as the causative agent of cryptococcosis in healthy individuals in western North America, despite previous characterization of the fungus as a pathogen in tropical or subtropical regions. As a foundation to study the genetics of virulence in this pathogen, we sequenced the genomes of a strain (WM276) representing the predominant global molecular type (VGI) and a clinical strain (R265) of the major genotype (VGIIa) causing disease in North America. We compared these C. gattii genomes with each other and with the genomes of representative strains of the two varieties of Cryptococcus neoformans that generally cause disease in immunocompromised people. Our comparisons included chromosome alignments, analysis of gene content and gene family evolution, and comparative genome hybridization (CGH). These studies revealed that the genomes of the two representative C. gattii strains (genotypes VGI and VGIIa) are colinear for the majority of chromosomes, with some minor rearrangements. However, multiortholog phylogenetic analysis and an evaluation of gene/sequence conservation support the existence of speciation within the C. gattii complex. More extensive chromosome rearrangements were observed upon comparison of the C. gattii and the C. neoformans genomes. Finally, CGH revealed considerable variation in clinical and environmental isolates as well as changes in chromosome copy numbers in C. gattii isolates displaying fluconazole heteroresistance. IMPORTANCE Isolates of Cryptococcus gattii are currently causing an outbreak of cryptococcosis in western North America, and most of the cases occurred in the absence of coinfection with HIV. This pattern is therefore in stark contrast to the current global burden of one million annual cases of cryptococcosis, caused by the related species Cryptococcus neoformans, in the HIV/AIDS population. The genome sequences of two outbreak-associated major genotypes of C. gattii reported here provide insights into genome variation within and between cryptococcal species. These sequences also provide a resource to further evaluate the epidemiology of cryptococcal disease and to evaluate the role of pathogen genes in the differential interactions of C. gattii and C. neoformans with immunocompromised and immunocompetent hosts. Isolates of Cryptococcus gattii are currently causing an outbreak of cryptococcosis in western North America, and most of the cases occurred in the absence of coinfection with HIV. This pattern is therefore in stark contrast to the current global burden of one million annual cases of cryptococcosis, caused by the related species Cryptococcus neoformans, in the HIV/AIDS population. The genome sequences of two outbreak-associated major genotypes of C. gattii reported here provide insights into genome variation within and between cryptococcal species. These sequences also provide a resource to further evaluate the epidemiology of cryptococcal disease and to evaluate the role of pathogen genes in the differential interactions of C. gattii and C. neoformans with immunocompromised and immunocompetent hosts.


Molecular Microbiology | 2004

Evolution of fungal sex chromosomes

James A. Fraser; Joseph Heitman

Sexual reproduction enables organisms to shuffle two parental genomes to produce recombinant progeny, and to purge the genome of deleterious mutations. Sex is conserved in virtually all organisms, from bacteria and fungi to plants and animals, and yet the mechanisms by which sexual identity are established share both conserved general features and are remarkably diverse. In animals, sexual identity is established by dimorphic sex chromosomes, whereas in fungi a specialized region of the genome, known as the mating‐type locus, governs the establishment of cell type identity and differs in DNA sequence between cells of different mating‐types. Recent studies on the mating‐type loci of fungi and algae reveal features shared with the mammalian X and Y chromosomes, suggesting that these represent early steps in the evolution of sex chromosomes.

Collaboration


Dive into the James A. Fraser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl A. Morrow

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bostjan Kobe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eve W. L. Chow

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge