Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Knowles is active.

Publication


Featured researches published by James A. Knowles.


Nature | 2009

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov

Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.


Nature | 2008

Rare chromosomal deletions and duplications increase risk of schizophrenia

Jennifer Stone; Michael C. O’Donovan; Hugh Gurling; George Kirov; Douglas Blackwood; Aiden Corvin; Nicholas John Craddock; Michael Gill; Christina M. Hultman; Paul Lichtenstein; Andrew McQuillin; Carlos N. Pato; Douglas M. Ruderfer; Michael John Owen; David St Clair; Patrick F. Sullivan; Pamela Sklar; Shaun Purcell; Joshua M. Korn; Stuart Macgregor; Derek W. Morris; Colm O’Dushlaine; Mark J. Daly; Peter M. Visscher; Peter Holmans; Edward M. Scolnick; Nigel Melville Williams; Lucy Georgieva; Ivan Nikolov; Nadine Norton

Schizophrenia is a severe mental disorder marked by hallucinations, delusions, cognitive deficits and apathy, with a heritability estimated at 73–90% (ref. 1). Inheritance patterns are complex, and the number and type of genetic variants involved are not understood. Copy number variants (CNVs) have been identified in individual patients with schizophrenia and also in neurodevelopmental disorders, but large-scale genome-wide surveys have not been performed. Here we report a genome-wide survey of rare CNVs in 3,391 patients with schizophrenia and 3,181 ancestrally matched controls, using high-density microarrays. For CNVs that were observed in less than 1% of the sample and were more than 100 kilobases in length, the total burden is increased 1.15-fold in patients with schizophrenia in comparison with controls. This effect was more pronounced for rarer, single-occurrence CNVs and for those that involved genes as opposed to those that did not. As expected, deletions were found within the region critical for velo-cardio-facial syndrome, which includes psychotic symptoms in 30% of patients. Associations with schizophrenia were also found for large deletions on chromosome 15q13.3 and 1q21.1. These associations have not previously been reported, and they remained significant after genome-wide correction. Our results provide strong support for a model of schizophrenia pathogenesis that includes the effects of multiple rare structural variants, both genome-wide and at specific loci.


American Journal of Human Genetics | 2000

Familial Primary Pulmonary Hypertension (Gene PPH1) Is Caused by Mutations in the Bone Morphogenetic Protein Receptor–II Gene

Zemin Deng; Jane H. Morse; Susan L. Slager; Nieves Cuervo; Keith J. Moore; George Venetos; Sergey Kalachikov; Eftihia Cayanis; Stuart G. Fischer; Robyn J. Barst; Susan E. Hodge; James A. Knowles

Familial primary pulmonary hypertension is a rare autosomal dominant disorder that has reduced penetrance and that has been mapped to a 3-cM region on chromosome 2q33 (locus PPH1). The phenotype is characterized by monoclonal plexiform lesions of proliferating endothelial cells in pulmonary arterioles. These lesions lead to elevated pulmonary-artery pressures, right-ventricular failure, and death. Although primary pulmonary hypertension is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs, including phentermine-fenfluramine. We genotyped 35 multiplex families with the disorder, using 27 microsatellite markers; we constructed disease haplotypes; and we looked for evidence of haplotype sharing across families, using the program TRANSMIT. Suggestive evidence of sharing was observed with markers GGAA19e07 and D2S307, and three nearby candidate genes were examined by denaturing high-performance liquid chromatography on individuals from 19 families. One of these genes (BMPR2), which encodes bone morphogenetic protein receptor type II, was found to contain five mutations that predict premature termination of the protein product and two missense mutations. These mutations were not observed in 196 control chromosomes. These findings indicate that the bone morphogenetic protein-signaling pathway is defective in patients with primary pulmonary hypertension and may implicate the pathway in the nonfamilial forms of the disease.


Nature | 2014

Transcriptional landscape of the prenatal human brain

Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Amanda Ebbert; Zackery L. Riley; Joshua J. Royall; Kaylynn Aiona; James M. Arnold; Crissa Bennet; Darren Bertagnolli; Krissy Brouner; Stephanie Butler; Shiella Caldejon; Anita Carey; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tim Dolbeare; Benjamin Facer; David Feng; Tim P. Fliss; Garrett Gee; Jeff Goldy; Lindsey Gourley; Benjamin W. Gregor; Guangyu Gu; Robert Howard

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Molecular Psychiatry | 2004

Investigation of serotonin-related genes in antidepressant response

Eric J. Peters; Susan L. Slager; James A. Knowles; Steven P. Hamilton

In this study, we sought out to test the hypothesis that genetic factors may influence antidepressant response to fluoxetine. The investigation focused on seven candidate genes in the serotonergic pathway involved in the synthesis, transport, recognition, and degradation of serotonin. Our clinical sample consisted of 96 subjects with unipolar major depression treated with fluoxetine with response variables assessed after a 12-week trial. Patient data were also collected to investigate the pattern of drug response. Using a high-throughput single-nucleotide polymorphism (SNP) genotyping platform and capillary electrophoresis, we genotyped patients at 110 SNPs and four repeat polymorphisms located in seven candidate genes (HTR1A, HTR2A, HTR2C, MAOA, SLC6A4, TPH1, and TPH2). Statistical tests performed included single-locus and haplotype association tests, and linkage disequilibrium (LD) estimation. Little evidence of population stratification was observed in the sample with 20 random SNPs using a genomic control procedure. Our most intriguing result involved three SNPs in the TPH1 gene and one SNP in the SLC6A4 gene, which show significant single-locus association when response to fluoxetine is compared to nonresponse (P=0.02–0.04). All odds ratios indicated an increased risk of not responding to fluoxetine. In the specific response vs nonspecific and nonresponse comparison, three SNPs in the TPH2 gene (P=0.02–0.04) were positively associated and one SNP in the HTR2A gene (P=0.02) was negatively associated. When comparing specific response to nonspecific response, we found significant negative associations in three SNPs in the HTR2A gene (P=0.001–0.03) and two SNPs in the MAOA gene (P=0.03–0.05). We observed variable, although strong LD, in each gene and unexpectedly low numbers of estimated haplotypes, formed from tagged SNPs. Significant haplotype associations were found in all but the HTR1A and HTR2C genes. Although these data should be interpreted cautiously due to the small sample size, these results implicate TPH1 and SLC6A4 in general response, and HTR2A, TPH2, and MAOA in the specificity of response to fluoxetine. Intriguingly, we observe that a number of the less frequent alleles of many of the SNP markers were associated with the nonresponse and nonspecific phenotypes.


Molecular Psychiatry | 2011

Genome-wide association study of recurrent early-onset major depressive disorder

Jianxin Shi; James B. Potash; James A. Knowles; Myrna M. Weissman; William Coryell; William A. Scheftner; William B. Lawson; J. R. DePaulo; Pablo V. Gejman; Alan R. Sanders; J. K. Johnson; Philip Adams; S Chaudhury; Dubravka Jancic; Oleg V. Evgrafov; A Zvinyatskovskiy; N Ertman; M Gladis; K Neimanas; M Goodell; Nancy Hale; N Ney; Ranjana Verma; Daniel B. Mirel; Peter Holmans; Douglas F. Levinson

A genome-wide association study was carried out in 1020 case subjects with recurrent early-onset major depressive disorder (MDD) (onset before age 31) and 1636 control subjects screened to exclude lifetime MDD. Subjects were genotyped with the Affymetrix 6.0 platform. After extensive quality control procedures, 671 424 autosomal single nucleotide polymorphisms (SNPs) and 25 068 X chromosome SNPs with minor allele frequency greater than 1% were available for analysis. An additional 1 892 186 HapMap II SNPs were analyzed based on imputed genotypic data. Single-SNP logistic regression trend tests were computed, with correction for ancestry-informative principal component scores. No genome-wide significant evidence for association was observed, assuming that nominal P<5 × 10−8 approximates a 5% genome-wide significance threshold. The strongest evidence for association was observed on chromosome 18q22.1 (rs17077540, P=1.83 × 10−7) in a region that has produced some evidence for linkage to bipolar-I or -II disorder in several studies, within an mRNA detected in human brain tissue (BC053410) and approximately 75 kb upstream of DSEL. Comparing these results with those of a meta-analysis of three MDD GWAS data sets reported in a companion article, we note that among the strongest signals observed in the GenRED sample, the meta-analysis provided the greatest support (although not at a genome-wide significant level) for association of MDD to SNPs within SP4, a brain-specific transcription factor. Larger samples will be required to confirm the hypothesis of association between MDD (and particularly the recurrent early-onset subtype) and common SNPs.


European Respiratory Journal | 2004

BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease

Kari E. Roberts; J.J. McElroy; W.P.K. Wong; E. Yen; Allison C. Widlitz; Robyn J. Barst; James A. Knowles; Jane H. Morse

The aim of the present study was to determine if patients with both pulmonary arterial hypertension (PAH), due to pulmonary vascular obstructive disease, and congenital heart defects (CHD), have mutations in the gene encoding bone morphogenetic protein receptor (BMPR)-2. The BMPR2 gene was screened in two cohorts: 40 adults and 66 children with PAH/CHD. CHDs were patent ductus arteriosus, atrial and ventricular septal defects, partial anomalous pulmonary venous return, transposition of the great arteries, atrioventicular canal, and rare lesions with systemic-to-pulmonary shunts. Six novel missense BMPR2 mutations were found in three out of four adults with complete type C atrioventricular canals and in three children. One child had an atrial septal defect and patent ductus arteriosus; one had an atrial septal defect, patent ductus arteriosus and partial anomalous pulmonary venous return; and one had an aortopulmonary window and a ventricular septal defect. Bone morphogenetic protein receptor 2 mutations were found in 6% of a mixed cohort of adults and children with pulmonary arterial hypertension/congenital heart defects. The current findings compliment recent reports in mouse models implicating members of the bone morphogenetic protein/transforming growth factor-β pathway inducing cardiac anomalies analogous to human atrioventricular canals, septal defects and conotruncal congenital heart defects. The small number of patients studied and the ascertainment bias inherent in selecting for pulmonary arterial hypertension require further investigation.


European Respiratory Journal | 2002

BMPR2 germline mutations in pulmonary hypertension associated with fenfluramine derivatives

Marc Humbert; Zemin Deng; Gérald Simonneau; Rj Barst; O. Sitbon; Martine Wolf; N. Cuervo; K.J. Moore; S.E. Hodge; James A. Knowles; Jane H. Morse

This study investigated whether patients developing pulmonary arterial hypertension (PAH) after exposure to the appetite suppressants fenfluramine and dexfenfluramine have mutations in the bone morphogenetic protein receptor 2 (BMPR2) gene, as reported in primary pulmonary hypertension. BMPR2 was examined for mutations in 33 unrelated patients with sporadic PAH, and in two sisters with PAH, all of whom had taken fenfluramine derivatives, as well as in 130 normal controls. The PAH patients also underwent cardiac catheterisation and body mass determinations. Three BMPR2 mutations predicting changes in the primary structure of the BMPR-II protein were found in three of the 33 unrelated patients (9%), and a fourth mutation was found in the two sisters. No BMPR2 mutations were identified in the 130 normal controls. This difference in frequency was statistically significant. Moreover, the mutation-positive patients had a somewhat shorter duration of fenfluramine exposure before illness than the mutation-negative patients, a difference that was statistically significant when the two sisters were included in the analysis. In conclusion, the present authors have detected bone morphogenetic protein receptor 2 mutations that appear to be rare in the general population but may combine with exposure to fenfluramine derivatives to greatly increase the risk of developing severe pulmonary arterial hypertension.


Psychological Medicine | 2012

Is obsessive-compulsive disorder an anxiety disorder, and what, if any, are spectrum conditions? A family study perspective.

O. J. Bienvenu; Jack Samuels; L. A. Wuyek; Kung Yee Liang; Ying Wang; Marco A. Grados; Bernadette Cullen; Mark A. Riddle; Benjamin D. Greenberg; Steven A. Rasmussen; Abby J. Fyer; Anthony Pinto; Scott L. Rauch; David L. Pauls; James T. McCracken; John Piacentini; Dennis L. Murphy; James A. Knowles; G. Nestadt

BACKGROUND Experts have proposed removing obsessive-compulsive disorder (OCD) from the anxiety disorders section and grouping it with putatively related conditions in DSM-5. The current study uses co-morbidity and familiality data to inform these issues. METHOD Case family data from the OCD Collaborative Genetics Study (382 OCD-affected probands and 974 of their first-degree relatives) were compared with control family data from the Johns Hopkins OCD Family Study (73 non-OCD-affected probands and 233 of their first-degree relatives). RESULTS Anxiety disorders (especially agoraphobia and generalized anxiety disorder), cluster C personality disorders (especially obsessive-compulsive and avoidant), tic disorders, somatoform disorders (hypochondriasis and body dysmorphic disorder), grooming disorders (especially trichotillomania and pathological skin picking) and mood disorders (especially unipolar depressive disorders) were more common in case than control probands; however, the prevalences of eating disorders (anorexia and bulimia nervosa), other impulse-control disorders (pathological gambling, pyromania, kleptomania) and substance dependence (alcohol or drug) did not differ between the groups. The same general pattern was evident in relatives of case versus control probands. Results in relatives did not differ markedly when adjusted for demographic variables and proband diagnosis of the same disorder, though the strength of associations was lower when adjusted for OCD in relatives. Nevertheless, several anxiety, depressive and putative OCD-related conditions remained significantly more common in case than control relatives when adjusting for all of these variables simultaneously. CONCLUSIONS On the basis of co-morbidity and familiality, OCD appears related both to anxiety disorders and to some conditions currently classified in other sections of DSM-IV.


Biological Psychiatry | 2007

Familiality of Factor Analysis-Derived YBOCS Dimensions in OCD-Affected Sibling Pairs from the OCD Collaborative Genetics Study

Gregor Hasler; Anthony Pinto; Benjamin D. Greenberg; Jack Samuels; Abby J. Fyer; David L. Pauls; James A. Knowles; James T. McCracken; John Piacentini; Mark A. Riddle; Scott L. Rauch; Steven A. Rasmussen; Virginia L. Willour; Marco A. Grados; Bernadette Cullen; O. Joseph Bienvenu; Yin Yao Shugart; Kung Yee Liang; Rudolf Hoehn-Saric; Ying Wang; Jonne G. Ronquillo; Gerald Nestadt; Dennis L. Murphy

BACKGROUND Identification of familial, more homogenous characteristics of obsessive-compulsive disorder (OCD) may help to define relevant subtypes and increase the power of genetic and neurobiological studies of OCD. While factor-analytic studies have found consistent, clinically meaningful OCD symptom dimensions, there have been only limited attempts to evaluate the familiality and potential genetic basis of such dimensions. METHODS Four hundred eighteen sibling pairs with OCD were evaluated using the Structured Clinical Interview for DSM-IV and the Yale-Brown Obsessive Compulsive Scale (YBOCS) Symptom Checklist and Severity scales. RESULTS After controlling for sex, age, and age of onset, robust sib-sib intraclass correlations were found for two of the four YBOCS factors: Factor IV (hoarding obsessions and compulsions (p = .001) and Factor I (aggressive, sexual, and religious obsessions, and checking compulsions; p = .002). Smaller, but still significant, familiality was found for Factor III (contamination/cleaning; p = .02) and Factor II (symmetry/ordering/arranging; p = .04). Limiting the sample to female subjects more than doubled the familiality estimates for Factor II (p = .003). Among potentially relevant comorbid conditions for genetic studies, bipolar I/II and major depressive disorder were strongly associated with Factor I (p < .001), whereas ADHD, alcohol dependence, and bulimia were associated with Factor II (p < .01). CONCLUSIONS Factor-analyzed OCD symptom dimensions in sibling pairs with OCD are familial with some gender-dependence, exhibit relatively specific relationships to comorbid psychiatric disorders and thus may be useful as refined phenotypes for molecular genetic studies of OCD.

Collaboration


Dive into the James A. Knowles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco A. Grados

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Riddle

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Oleg V. Evgrafov

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge