Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Lee is active.

Publication


Featured researches published by James A. Lee.


Journal of Organic Chemistry | 2009

Ammonium-Directed Oxidation of Cyclic Allylic and Homoallylic Amines

Christopher W. Bond; Alexander J. Cresswell; Stephen G. Davies; Ai M. Fletcher; Wataru Kurosawa; James A. Lee; Paul M. Roberts; Angela J. Russell; Andrew D. Smith; James E. Thomson

The ammonium-directed olefinic oxidation of a range of cyclic allylic and homoallylic amines has been investigated. Functionalization of a range of allylic 3-(N,N-dibenzylamino)cycloalk-1-enes with m-CPBA in the presence of Cl(3)CCO(2)H gives exclusively the corresponding syn-epoxide for the 5-membered ring (>99:1 dr), the anti-epoxide for the 8-membered ring (>99:1 dr), and predominantly the anti-epoxide for the 7-membered ring (94:6 dr). Oxidation of the homoallylic amines 3-(N-benzylamino)methylcyclohex-1-ene and 3-(N,N-dibenzylamino)methylcyclohex-1-ene gave, in both cases, the corresponding N-protected 1,2-anti-2,3-syn-3-aminomethylcyclohexane-1,2-diol with high levels of diastereoselectivity (>or=90:10 dr). The versatile synthetic intermediates resulting from these oxidation reactions are readily transformed into a range of amino diols.


Organic Letters | 2008

Highly (E)-selective Wadsworth-Emmons reactions promoted by methylmagnesium bromide.

Timothy D. W. Claridge; Stephen G. Davies; James A. Lee; Rebecca L. Nicholson; Paul M. Roberts; Angela J. Russell; Andrew D. Smith; Steven M. Toms

An experimentally simple protocol for the very highly (E)-selective Wadsworth-Emmons reaction [(E):(Z) selectivities in excess of 180:1 in some cases] of a range of straight-chain and branched aliphatic, substituted aromatic, and base-sensitive aldehydes via reaction with an alkyl diethylphosphonoacetate and MeMgBr is reported.


Organic Letters | 2011

Conjugate Addition of Lithium N-Phenyl-N-(α-methylbenzyl)amide: Application to the Asymmetric Synthesis of (R)-(−)-Angustureine

Scott A. Bentley; Stephen G. Davies; James A. Lee; Paul M. Roberts; James E. Thomson

The conjugate addition of lithium (R)-N-phenyl-N-(α-methylbenzyl)amide to a range of α,β-unsaturated 4-methoxyphenyl esters proceeds with excellent levels of diastereoselectivity to give the corresponding β-amino esters in good yield and as single diastereoisomers (>99:1 dr). The synthetic utility of this methodology has been demonstrated via the short and concise asymmetric synthesis of the tetrahydroquinoline alkaloid (R)-(-)-angustureine in six steps and 32% overall yield from commercially available oct-2-enoic acid.


Organic Letters | 2010

An oxidation and ring contraction approach to the synthesis of (+/-)-1-deoxynojirimycin and (+/-)-1-deoxyaltronojirimycin.

Sharan K. Bagal; Stephen G. Davies; James A. Lee; Paul M. Roberts; Angela J. Russell; Philip M. Scott; James E. Thomson

A reaction sequence involving the chemoselective olefinic oxidation of N(1)-benzyl-2,7-dihydro-1H-azepine with m-CPBA in the presence of HBF(4) and BnOH followed by ring contraction facilitates the stereoselective preparation of either of the epoxide diastereoisomers of (2RS,3SR)-N(1)-benzyl-2-chloromethyl-3-benzyloxy-4,5-epoxypiperidine by simple modification of the reaction conditions. Epoxide ring opening, functional group interconversion, and deprotection allow the synthesis of (+/-)-1-deoxynojirimycin and (+/-)-1-deoxyaltronojirimycin.


Organic Letters | 2010

β-Fluoroamphetamines via the Stereoselective Synthesis of Benzylic Fluorides

Alexander J. Cresswell; Stephen G. Davies; James A. Lee; Paul M. Roberts; Angela J. Russell; James E. Thomson; Melloney Tyte

A range of substituted aryl epoxides undergo efficient ring-opening hydrofluorination upon treatment with 0.33 equiv of BF(3) x OEt(2) in CH(2)Cl(2) at -20 degrees C to give the corresponding syn-fluorohydrins, consistent with a mechanism involving a stereoselective S(N)1-type epoxide ring-opening process. The benzylic fluoride products of these reactions are valuable templates for further elaboration, as demonstrated by the preparation of a range of aryl-substituted beta-fluoroamphetamines.


Journal of Organic Chemistry | 2010

One-pot conversions of olefins to cyclic carbonates and secondary allylic and homoallylic amines to cyclic carbamates.

Stephen G. Davies; Ai M. Fletcher; Wataru Kurosawa; James A. Lee; Giovanna Poce; Paul M. Roberts; James E. Thomson; David M. Williamson

Sequential treatment of a 1,2-disubstituted olefin with m-CPBA, Br3CCO2H, and DBU results in the one-pot, stereospecific conversion of the olefin to the corresponding disubstituted cyclic carbonate (1,3-dioxolan-2-one). The reaction proceeds via an initial epoxidation followed by S(N)2-type epoxide ring opening by Br3CCO2H and subsequent base-promoted carbonate formation upon elimination of bromoform. When a solution of a secondary allylic or homoallylic amine and Br3CCO2H is sequentially treated with m-CPBA then DBU, the product of the reaction is a cyclic carbamate (1,3-oxazolidin-2-one or 1,3-oxazinan-2-one).


Organic Letters | 2012

Asymmetric synthesis of the tropane alkaloid (+)-pseudococaine via ring-closing iodoamination.

E. Anne Brock; Stephen G. Davies; James A. Lee; Paul M. Roberts; James E. Thomson

Ring-closing iodoamination of tert-butyl 2-hydroxy-7-[N-methyl-N-(α-methyl-p-methoxybenzyl)amino]cyclohept-3-ene-1-carboxylates proceeds with concomitant loss of the N-α-methyl-p-methoxybenzyl group to give the corresponding 8-azabicyclo[3.2.1]octane scaffolds in >99:1 dr. Subsequent elaboration of one of these templates provided access to (+)-pseudococaine hydrochloride, in seven steps and 31% overall yield from commercially available starting materials.


Organic Letters | 2011

Highly diastereoselective and stereodivergent dihydroxylations of acyclic allylic amines: application to the asymmetric synthesis of 3,6-dideoxy-3-amino-L-talose.

Kristína Csatayová; Stephen G. Davies; James A. Lee; Paul M. Roberts; Angela J. Russell; James E. Thomson; David L. Wilson

Aminohydroxylation of tert-butyl sorbate [tert-butyl (E,E)-hexa-2,4-dienoate] using enantiopure lithium (R)-N-benzyl-N-(α-methylbenzyl)amide and (-)-camphorsulfonyloxaziridine gives tert-butyl (R,R,R,E)-2-hydroxy-3-[N-benzyl-N-(α-methylbenzyl)amino]hex-4-enoate in >99:1 dr. Subsequent dihydroxylation under Upjohn conditions (OsO(4)/NMO) gives tert-butyl (2R,3R,4S,5S,αR)-2,4,5-trihydroxy-3-[N-benzyl-N-(α-methylbenzyl)amino]hexanoate (in 95:5 dr) while dihydroxylation under Donohoe conditions (OsO(4)/TMEDA) proceeds with antipodal diastereofacial selectivity to give the (R,R,R,R,R)-diastereoisomer (in 95:5 dr). The amino triols resulting from these dihydroxylation reactions are useful for further elaboration, as demonstrated by the asymmetric synthesis of 3,6-dideoxy-3-amino-L-talose.


Journal of Organic Chemistry | 2012

Ammonium-Directed Olefinic Epoxidation: Kinetic and Mechanistic Insights

Méabh B. Brennan; Timothy D. W. Claridge; Richard G. Compton; Stephen G. Davies; Ai M. Fletcher; Martin C. Henstridge; David S. Hewings; Wataru Kurosawa; James A. Lee; Paul M. Roberts; Anne K. Schoonen; James E. Thomson

The ammonium-directed olefinic epoxidations of a range of differentially N-substituted cyclic allylic and homoallylic amines (derived from cyclopentene, cyclohexene, and cycloheptene) have been investigated, and the reaction kinetics have been analyzed. The results of these studies suggest that both the ring size and the identity of the substituents on nitrogen are important in determining both the overall rate and the stereochemical outcome of the epoxidation reaction. In general, secondary amines or tertiary amines with nonsterically demanding substituents on nitrogen are superior to tertiary amines with sterically demanding substituents on nitrogen in their ability to promote the oxidation reaction. Furthermore, in all cases examined, the ability of the (in situ formed) ammonium substituent to direct the stereochemical course of the epoxidation reaction is either comparable or superior to that of the analogous hydroxyl substituent. Much slower rates of ring-opening of the intermediate epoxides are observed in cyclopentene-derived and cycloheptene-derived allylic amines as compared with their cyclohexene-derived allylic and homoallylic amine counterparts, allowing for isolation of these intermediates in both of the former cases.


Journal of Organic Chemistry | 2012

Diastereodivergent Hydroxyfluorination of Cyclic and Acyclic Allylic Amines: Synthesis of 4-Deoxy-4-fluorophytosphingosines

Alexander J. Cresswell; Stephen G. Davies; James A. Lee; Melloney J. Morris; Paul M. Roberts; James E. Thomson

A diastereodivergent hydroxyfluorination protocol enabling the direct conversion of some conformationally biased allylic amines to the corresponding diastereoisomeric amino fluorohydrins has been developed. Sequential treatment of a conformationally biased allylic amine with 2 equiv of HBF(4)·OEt(2) followed by m-CPBA promotes epoxidation of the olefin on the face proximal to the amino group under hydrogen-bonded direction from the in situ formed ammonium ion. Regioselective and stereospecific epoxide ring-opening by transfer of fluoride from a BF(4)(-) ion (an S(N)2-type process at the carbon atom distal to the ammonium moiety) then occurs in situ to give the corresponding amino fluorohydrin. Alternatively, an analogous reaction using 20 equiv of HBF(4)·OEt(2) results in preferential epoxidation of the opposite face of the olefin, which is followed by regioselective and stereospecific epoxide ring-opening by transfer of fluoride from a BF(4)(-) ion (an S(N)2-type process at the carbon atom distal to the ammonium moiety). The synthetic utility of this methodology is demonstrated via its application to a synthesis of 4-deoxy-4-fluoro-L-xylo-phytosphingosine and 4-deoxy-4-fluoro-L-lyxo-phytosphingosine, each in five steps from Garners aldehyde.

Collaboration


Dive into the James A. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge