Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Schulte is active.

Publication


Featured researches published by James A. Schulte.


Evolution | 2010

Early bursts of body size and shape evolution are rare in comparative data.

Luke J. Harmon; Jonathan B. Losos; T. Jonathan Davies; Rosemary G. Gillespie; John L. Gittleman; W. Bryan Jennings; Kenneth H. Kozak; Mark A. McPeek; Franck Moreno-Roark; Thomas J. Near; Andy Purvis; Robert E. Ricklefs; Dolph Schluter; James A. Schulte; Ole Seehausen; Brian L. Sidlauskas; Omar Torres-Carvajal; Jason T. Weir; Arne Ø. Mooers

George Gaylord Simpson famously postulated that much of lifes diversity originated as adaptive radiations—more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad‐scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early‐burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long‐term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.


Journal of Evolutionary Biology | 2004

The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae: Liolaemini)

James A. Schulte; Jonathan B. Losos; F. B. Cruz; H. Núñez

Phenotypic differences among species are known to have functional consequences that in turn allow species to use different habitats. However, the role of behaviour in this ecomorphological paradigm is not well defined. We investigated the relationship between morphology, ecology and escape behaviour among 25 species of the lizard clade Liolaemus in a phylogenetic framework. We demonstrate that the relationship between morphology and characteristics of habitat structure shows little or no association, consistent with a previous study on this group. However, a significant relationship was found between morphology and escape behaviour with the distance a lizard moved from a potential predator correlated with body width, axilla‐groin length, and pelvis width. A significant relationship between escape behaviour and habitat structure occupation was found; lizards that occupied tree trunks and open ground ran longer distances from predators and were found greater distances from shelter. Behavioural strategies used by these lizards in open habitats appear to have made unnecessary the evolution of limb morphology that has occurred in other lizards from other clades that are found in open settings. Understanding differences in patterns of ecomorphological relationships among clades is an important component for studying adaptive diversification.


Journal of Evolutionary Biology | 2005

The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards

F. B. Cruz; Lee A. Fitzgerald; Robert E. Espinoza; James A. Schulte

We tested for the occurrence of Bergmanns rule, the pattern of increasing body size with latitude, and Rapoports rule, the positive relationship between geographical range size and latitude, in 34 lineages of Liolaemus lizards that occupy arid regions of the Andean foothills. We tested the climatic‐variability hypothesis (CVH) by examining the relationship between thermal tolerance breadth and distribution. Each of these analyses was performed varying the level of phylogenetic inclusiveness. Bergmanns rule and the CVH were supported, but Rapoports rule was not. More variance in the data for Bergmanns rule and the CVH was explained using species belonging to the L. boulengeri series rather than all species, and inclusion of multiple outgroups tended to obscure these macroecological patterns. Evidence for Bergmanns rule and the predicted patterns from the CVH remained after application of phylogenetic comparative methods, indicating a greater role of ecological processes rather than phylogeny in shaping the current species distributions of these lizards.


Herpetologica | 2003

PHYLOGENETIC RELATIONSHIPS WITHIN IGUANIDAE INFERRED USING MOLECULAR AND MORPHOLOGICAL DATA AND A PHYLOGENETIC TAXONOMY OF IGUANIAN LIZARDS

James A. Schulte; John Pablo Valladares; Allan Larson

We present phylogenetic analyses of 42 new partial mitochondrial-DNA sequences in combination with 28 previously published sequences representing all eight major groups of the lizard clade Iguanidae (sensu lato). These sequences include 1838 aligned positions (1013 parsimony informative for ingroup taxa) extending from the protein-coding gene ND1 (subunit one of NADH dehydrogenase) through the genes encoding tRNAIle, tRNAGln, tRNAMet, ND2 (NADH dehydrogenase subunit two), tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, to the protein-coding gene COI (subunit I of cytochrome c oxidase). These data, analyzed in combination with 67 previously published morphological characters, provide statistical support for monophyly of iguanid clades Corytophaninae, Crotaphytinae, Hoplocercinae, Iguaninae, Oplurinae, and Phrynosomatinae. Monophyly is neither supported nor statistically rejected for Polychrotinae and Tropidurinae. Polychrotinae* and Tropidurinae* may be recognized as metataxa, to denote the fact that evidence for their monophyly is equivocal, or replaced by recognizing constituent groups whose monophyly has stronger empirical support. A phylogenetically (non-ranked) based, statistically robust taxonomy of iguanian lizards is proposed. The Old World lizard clade, Acrodonta, is composed of Chamaeleonidae and Agamidae* with the Agaminae, Amphibolurinae, Draconinae, Hydrosaurinae, Leiolepidinae, and Uromastycinae nested within Agamidae*. The predominately New World clade, Iguanidae, contains the groups Corytophaninae, Crotaphytinae, Hoplocercinae, Iguaninae, Oplurinae, Phrynosomatinae, Polychrotinae*, and Tropidurinae*; with Anolis, Leiosaurini (composed of the Leiosaurae and Anisolepae), and Polychrus as the subgroups of Polychrotinae*; and Leiocephalus, Liolaemini, and Tropidurini as the subgroups of Tropidurinae*.


Journal of Zoology | 2002

Cautionary comments on the measurement of maximum locomotor capabilities

Jonathan B. Losos; Douglas A. Creer; James A. Schulte

In recent years, laboratory measurements of locomotor performance of small organisms have been used increasingly to study questions in behavioural, physiological, and evolutionary ecology. Although a valuable tool that can provide insight into organismal function, behaviour, and adaptation, this approach is potentially limited by the quality of the data collected. Using the study of maximum sprint speed in lizards as an example, common problems in methodology that may confound interpretation of performance studies are discussed.


Evolution | 2007

A PHYLOGENETIC TEST FOR ADAPTIVE CONVERGENCE IN ROCK-DWELLING LIZARDS

Liam J. Revell; Michele A. Johnson; James A. Schulte; Jason J. Kolbe; Jonathan B. Losos

Abstract Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.


Proceedings of the Royal Society of London B: Biological Sciences | 2003

Molecular phylogenetic evidence for ancient divergence of lizard taxa on either side of Wallace's Line.

James A. Schulte; Jane Melville; Allan Larson

Wallaces Line, separating the terrestrial faunas of South East Asia from the Australia-New Guinea region, is the most prominent and well-studied biogeographical division in the world. Phylogenetically distinct subgroups of major animal and plant groups have been documented on either side of Wallaces Line since it was first proposed in 1859. Despite its importance, the temporal history of fragmentation across this line is virtually unknown and the geological foundation has rarely been discussed. Using molecular phylogenetics and dating techniques, we show that the split between taxa in the South East Asian and the Australian-New Guinean geological regions occurred during the Late Jurassic to Early Cretaceous in two independent lizard clades. This estimate is compatible with the hypothesis of rifting Gondwanan continental fragments during the Mesozoic and strongly rejects the hypothetical origin of various members of the Australian-New Guinean herpetofauna as relatively recent invasions from South East Asia. Our finding suggests an ancient fragmentation of lizard taxa on either side of Wallaces Line and provides further evidence that the composition of modern global communities has been significantly affected by rifting and accretion of Gondwanan continental plates during the Middle to Late Mesozoic.


Systematic Biology | 2016

How Should Genes and Taxa be Sampled for Phylogenomic Analyses with Missing Data? An Empirical Study in Iguanian Lizards

Jeffrey W. Streicher; James A. Schulte; John J. Wiens

Targeted sequence capture is becoming a widespread tool for generating large phylogenomic data sets to address difficult phylogenetic problems. However, this methodology often generates data sets in which increasing the number of taxa and loci increases amounts of missing data. Thus, a fundamental (but still unresolved) question is whether sampling should be designed to maximize sampling of taxa or genes, or to minimize the inclusion of missing data cells. Here, we explore this question for an ancient, rapid radiation of lizards, the pleurodont iguanians. Pleurodonts include many well-known clades (e.g., anoles, basilisks, iguanas, and spiny lizards) but relationships among families have proven difficult to resolve strongly and consistently using traditional sequencing approaches. We generated up to 4921 ultraconserved elements with sampling strategies including 16, 29, and 44 taxa, from 1179 to approximately 2.4 million characters per matrix and approximately 30% to 60% total missing data. We then compared mean branch support for interfamilial relationships under these 15 different sampling strategies for both concatenated (maximum likelihood) and species tree (NJst) approaches (after showing that mean branch support appears to be related to accuracy). We found that both approaches had the highest support when including loci with up to 50% missing taxa (matrices with ~40-55% missing data overall). Thus, our results show that simply excluding all missing data may be highly problematic as the primary guiding principle for the inclusion or exclusion of taxa and genes. The optimal strategy was somewhat different for each approach, a pattern that has not been shown previously. For concatenated analyses, branch support was maximized when including many taxa (44) but fewer characters (1.1 million). For species-tree analyses, branch support was maximized with minimal taxon sampling (16) but many loci (4789 of 4921). We also show that the choice of these sampling strategies can be critically important for phylogenomic analyses, since some strategies lead to demonstrably incorrect inferences (using the same method) that have strong statistical support. Our preferred estimate provides strong support for most interfamilial relationships in this important but phylogenetically challenging group.


Austral Ecology | 2001

Correlates of active body temperatures and microhabitat occupation in nine species of central Australian agamid lizards

Jane Melville; James A. Schulte

Body temperatures of active lizards and their correspondence with microhabitat occupation were studied for nine species of agamid lizards in the central Australian arid zone. Thermoregulatory behaviour was also documented using several measures, such as the use of shade and perch height. The effects of thermal environment on lizard habitat occupation were hypothesized to be significant, because desert regions experience daily and seasonal extremes of temperature that are well in excess of a lizard’s preferred temperature range. All species, except Ctenophorus isolepis and Diporiphora winneckei, were found to have body temperatures that corresponded closely to ground and surface temperatures. Thermoregulatory behaviour was also found to be important throughout a lizard’s daily activity; all study species, other than Ctenophorus isolepis, were found to increase their perch height in the middle of the day. Ctenophorus isolepis was shown to be a strictly terrestrial species that uses the shade of spinifex in its thermoregulatory behaviour. Species exhibited a non-random selection of microhabitats and a preference for a particular set of thermal and structural factors. In this study, it was shown that structural factors were particularly important in microhabitat occupation. Thermal factors accounted for a smaller proportion of variance in microhabitat occupation, but still played a considerable role in the microhabitat use in central Australian agamids.


Evolution | 2011

EVOLUTION OF EXTREME BODY SIZE DISPARITY IN MONITOR LIZARDS (VARANUS)

David C. Collar; James A. Schulte; Jonathan B. Losos

Many features of species’ biology, including life history, physiology, morphology, and ecology are tightly linked to body size. Investigation into the causes of size divergence is therefore critical to understanding the factors shaping phenotypic diversity within clades. In this study, we examined size evolution in monitor lizards (Varanus), a clade that includes the largest extant lizard species, the Komodo dragon (V. komodoensis), as well as diminutive species that are nearly four orders of magnitude smaller in adult body mass. We demonstrate that the remarkable body size disparity of this clade is a consequence of different selective demands imposed by three major habitat use patterns—arboreality, terrestriality, and rock‐dwelling. We reconstructed phylogenetic relationships and ancestral habitat use and applied model selection to determine that the best‐fitting evolutionary models for species’ adult size are those that infer oppositely directed adaptive evolution associated with terrestriality and rock‐dwelling, with terrestrial lineages evolving extremely large size and rock‐dwellers becoming very small. We also show that habitat use affects the evolution of several ecologically important morphological traits independently of body size divergence. These results suggest that habitat use exerts a strong, multidimensional influence on the evolution of morphological size and shape disparity in monitor lizards.

Collaboration


Dive into the James A. Schulte's collaboration.

Top Co-Authors

Avatar

Allan Larson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

J. Robert Macey

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Félix Benjamín Cruz

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Marcelo Fabián Bonino

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristian Simón Abdala

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Débora Lina Moreno Azócar

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge