Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. West is active.

Publication


Featured researches published by James A. West.


Cell Metabolism | 2016

Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes

Pete J. Cox; Tom Kirk; Tom Ashmore; Kristof Willerton; Rhys D. Evans; Alan Smith; Andrew J. Murray; Brianna Jane Stubbs; James A. West; Stewart W McLure; M. Todd King; Michael S. Dodd; Cameron Holloway; Stefan Neubauer; Scott Drawer; Richard L. Veech; Julian L. Griffin; Kieran Clarke

Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease.


Circulation-cardiovascular Imaging | 2014

Impaired In Vivo Mitochondrial Krebs Cycle Activity After Myocardial Infarction Assessed Using Hyperpolarized Magnetic Resonance Spectroscopy

Michael S. Dodd; Helen J. Atherton; Carolyn A. Carr; Daniel J. Stuckey; James A. West; Julian L. Griffin; George K. Radda; Kieran Clarke; Lisa C. Heather; Damian J. Tyler

Background—Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Methods and Results—Using hyperpolarized carbon-13 (13C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased 13C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. Conclusions—The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment.


The Journal of Physiology | 2014

Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart

Tom Ashmore; Bernadette O. Fernandez; Cristina Branco-Price; James A. West; Andrew S. Cowburn; Lisa C. Heather; Julian L. Griffin; Randall S. Johnson; Martin Feelisch; Andrew J. Murray

Exposure to environmental hypoxia, at high altitude or in a chamber, impairs cardiac energetics and alters mitochondrial function. Inorganic nitrate, a ubiquitous dietary constituent, improves mitochondrial efficiency, lowering the oxygen cost of exercise, whilst elevated circulating nitrogen oxide levels in high‐altitude natives enhances blood flow. Here we report that dietary nitrate supplementation prevents hypoxia‐induced changes in cardiac mitochondrial function and energetics, whilst ameliorating oxidative stress, suggesting improved tissue oxygenation. Furthermore, nitrate supplementation suppresses cardiac arginase expression and increases tissue l‐arginine levels under both hypoxic and normoxic conditions, underpinning a novel mechanism to enhance the availability of nitric oxide. Nitrate supplementation may thus be of benefit to individuals exposed to hypobaric hypoxia at altitude or in patients with diseases characterised by tissue hypoxia and energetic impairment, such as heart failure and chronic obstructive pulmonary disease, or in the critically ill.


PLOS Biology | 2013

Hypoxic Regulation of Hand1 Controls the Fetal-Neonatal Switch in Cardiac Metabolism

Ross A. Breckenridge; Izabela Piotrowska; Keat-Eng Ng; Timothy J. Ragan; James A. West; Surendra Kotecha; Norma Towers; Michael Bennett; Petra C. Kienesberger; Ryszard T. Smolenski; Hillary K. Siddall; John Offer; Mihaela M. Mocanu; Derek M. Yelon; Jason R. B. Dyck; Jules Griffin; Andrey Y. Abramov; Alex P. Gould; Timothy J. Mohun

This study reveals a novel pathway that responds to hypoxia and modulates energy metabolism by cardiomyocytes in the mouse heart, thereby determining oxygen consumption.


BMC Biology | 2015

Nitrate enhances skeletal muscle fatty acid oxidation via a nitric oxide-cGMP-PPAR-mediated mechanism

Tom Ashmore; Lee D. Roberts; Andrea J. Morash; Aleksandra O. Kotwica; John Finnerty; James A. West; Steven Murfitt; Bernadette O. Fernandez; Cristina Branco; Andrew S. Cowburn; Kieran Clarke; Randall S. Johnson; Martin Feelisch; Julian L. Griffin; Andrew J. Murray

BackgroundInsulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of β-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms.ResultsHerein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARβ/δ- and PPARα-dependent mechanism. Enhanced PPARβ/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα−/− mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation.ConclusionsNitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.


BMC Bioinformatics | 2016

Integration of metabolomics, lipidomics and clinical data using a machine learning method

Animesh Acharjee; Zsuzsanna Ament; James A. West; Elizabeth Stanley; Julian L. Griffin

BackgroundThe recent pandemic of obesity and the metabolic syndrome (MetS) has led to the realisation that new drug targets are needed to either reduce obesity or the subsequent pathophysiological consequences associated with excess weight gain. Certain nuclear hormone receptors (NRs) play a pivotal role in lipid and carbohydrate metabolism and have been highlighted as potential treatments for obesity. This realisation started a search for NR agonists in order to understand and successfully treat MetS and associated conditions such as insulin resistance, dyslipidaemia, hypertension, hypertriglyceridemia, obesity and cardiovascular disease. The most studied NRs for treating metabolic diseases are the peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-γ, and PPAR-δ. However, prolonged PPAR treatment in animal models has led to adverse side effects including increased risk of a number of cancers, but how these receptors change metabolism long term in terms of pathology, despite many beneficial effects shorter term, is not fully understood. In the current study, changes in male Sprague Dawley rat liver caused by dietary treatment with a PPAR-pan (PPAR-α, −γ, and –δ) agonist were profiled by classical toxicology (clinical chemistry) and high throughput metabolomics and lipidomics approaches using mass spectrometry.ResultsIn order to integrate an extensive set of nine different multivariate metabolic and lipidomics datasets with classical toxicological parameters we developed a hypotheses free, data driven machine learning approach. From the data analysis, we examined how the nine datasets were able to model dose and clinical chemistry results, with the different datasets having very different information content.ConclusionsWe found lipidomics (Direct Infusion-Mass Spectrometry) data the most predictive for different dose responses. In addition, associations with the metabolic and lipidomic data with aspartate amino transaminase (AST), a hepatic leakage enzyme to assess organ damage, and albumin, indicative of altered liver synthetic function, were established. Furthermore, by establishing correlations and network connections between eicosanoids, phospholipids and triacylglycerols, we provide evidence that these lipids function as a key link between inflammatory processes and intermediary metabolism.


Genome Medicine | 2015

Mechanistic insights revealed by lipid profiling in monogenic insulin resistance syndromes

Michael Eiden; Albert Koulman; Mensud Hatunic; James A. West; Steven Murfitt; Michael Osei; Claire Adams; Xinzhu Wang; Yajing Chu; Luke Marney; Lee D. Roberts; Stephen O’Rahilly; Robert K. Semple; David B. Savage; Julian L. Griffin

BackgroundEvidence from several recent metabolomic studies suggests that increased concentrations of triacylglycerols with shorter (14–16 carbon atoms), saturated fatty acids are associated with insulin resistance and the risk of type 2 diabetes. Although causality cannot be inferred from association studies, patients in whom the primary cause of insulin resistance can be genetically defined offer unique opportunities to address this challenge.MethodsWe compared metabolite profiles in patients with congenital lipodystrophy or loss-of-function insulin resistance (INSR gene) mutations with healthy controls.ResultsThe absence of significant differences in triacylglycerol species in the INSR group suggest that changes previously observed in epidemiological studies are not purely a consequence of insulin resistance. The presence of triacylglycerols with lower carbon numbers and high saturation in patients with lipodystrophy suggests that these metabolite changes may be associated with primary adipose tissue dysfunction. The observed pattern of triacylglycerol species is indicative of increased de novo lipogenesis in the liver. To test this we investigated the distribution of these triacylglycerols in lipoprotein fractions using size exclusion chromatography prior to mass spectrometry. This associated these triacylglycerols with very low-density lipoprotein particles, and hence release of triacylglycerols into the blood from the liver. To test further the hepatic origin of these triacylglycerols we induced de novo lipogenesis in the mouse, comparing ob/ob and wild-type mice on a chow or high fat diet, confirming that de novo lipogenesis induced an increase in relatively shorter, more saturated fatty acids.ConclusionsOverall, these studies highlight hepatic de novo lipogenesis in the pathogenesis of metabolic dyslipidaemia in states where energy intake exceeds the capacity of adipose tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Metabolic basis to Sherpa altitude adaptation

James A. Horscroft; Aleksandra O. Kotwica; Verena Laner; James A. West; Philip J. Hennis; Denny Z. H. Levett; David J Howard; Bernadette O. Fernandez; Sarah Burgess; Zsuzsanna Ament; Edward Gilbert-Kawai; Andre Vercueil; Blaine Landis; Kay Mitchell; Monty Mythen; Cristina Branco; Randall S. Johnson; Martin Feelisch; Hugh Montgomery; Julian L. Griffin; Michael P. W. Grocott; Erich Gnaiger; Daniel S. Martin; Andrew J. Murray

Significance A relative fall in tissue oxygen levels (hypoxia) is a common feature of many human diseases, including heart failure, lung diseases, anemia, and many cancers, and can compromise normal cellular function. Hypoxia also occurs in healthy humans at high altitude due to low barometric pressures. Human populations resident at high altitude in the Himalayas have evolved mechanisms that allow them to survive and perform, including adaptations that preserve oxygen delivery to the tissues. Here, we studied one such population, the Sherpas, and found metabolic adaptations, underpinned by genetic differences, that allow their tissues to use oxygen more efficiently, thereby conserving muscle energy levels at high altitude, and possibly contributing to the superior performance of elite climbing Sherpas at extreme altitudes. The Himalayan Sherpas, a human population of Tibetan descent, are highly adapted to life in the hypobaric hypoxia of high altitude. Mechanisms involving enhanced tissue oxygen delivery in comparison to Lowlander populations have been postulated to play a role in such adaptation. Whether differences in tissue oxygen utilization (i.e., metabolic adaptation) underpin this adaptation is not known, however. We sought to address this issue, applying parallel molecular, biochemical, physiological, and genetic approaches to the study of Sherpas and native Lowlanders, studied before and during exposure to hypobaric hypoxia on a gradual ascent to Mount Everest Base Camp (5,300 m). Compared with Lowlanders, Sherpas demonstrated a lower capacity for fatty acid oxidation in skeletal muscle biopsies, along with enhanced efficiency of oxygen utilization, improved muscle energetics, and protection against oxidative stress. This adaptation appeared to be related, in part, to a putatively advantageous allele for the peroxisome proliferator-activated receptor A (PPARA) gene, which was enriched in the Sherpas compared with the Lowlanders. Our findings suggest that metabolic adaptations underpin human evolution to life at high altitude, and could have an impact upon our understanding of human diseases in which hypoxia is a feature.


Cardiovascular Research | 2017

Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation.

L Mansor; Maria da Luz Sousa Fialho; Georgina Yea; Will A. Coumans; James A. West; Matthew P. M. Kerr; Carolyn A. Carr; Joost J. F. P. Luiken; Jan F.C. Glatz; Rhys D. Evans; Julian L. Griffin; Damian J. Tyler; Kieran Clarke; Lisa C. Heather

Aims The type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed that pharmacologically inhibiting fatty acid uptake, as the primary step in the pathway, would provide an alternative mechanism to rebalance metabolism and prevent lipid accumulation following hypoxic stress. Methods and results Hearts from type 2 diabetic and control male Wistar rats were perfused in normoxia, hypoxia and reoxygenation, with the FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO) infused 4 min before hypoxia. SSO infusion into diabetic hearts decreased the fatty acid oxidation rate by 29% and myocardial triglyceride concentration by 48% compared with untreated diabetic hearts, restoring fatty acid metabolism to control levels following hypoxia-reoxygenation. SSO infusion increased the glycolytic rate by 46% in diabetic hearts during hypoxia, increased pyruvate dehydrogenase activity by 53% and decreased lactate efflux rate by 56% compared with untreated diabetic hearts during reoxygenation. In addition, SSO treatment of diabetic hearts increased intermediates within the second span of the Krebs cycle, namely fumarate, oxaloacetate, and the FAD total pool. The cardiac dysfunction in diabetic hearts following decreased oxygen availability was prevented by SSO-infusion prior to the hypoxic stress. Infusing SSO into diabetic hearts increased rate pressure product by 60% during hypoxia and by 32% following reoxygenation, restoring function to control levels. Conclusions Diabetic hearts have limited metabolic flexibility and cardiac dysfunction when stressed, which can be rapidly rectified by reducing fatty acid uptake with the FAT/CD36 inhibitor, SSO. This novel therapeutic approach not only reduces fat oxidation but also lipotoxicity, by targeting the primary step in the fatty acid metabolism pathway.


Metabolomics | 2016

A targeted metabolomics assay for cardiac metabolism and demonstration using a mouse model of dilated cardiomyopathy

James A. West; Abdelaziz Beqqali; Zsuzsanna Ament; Perry M. Elliott; Yigal M. Pinto; Eloisa Arbustini; Julian L. Griffin

Metabolomics can be performed either as an ‘open profiling’ tool where the aim is to measure, usually in a semi-quantitative manner, as many metabolites as possible or perform ‘closed’ or ‘targeted’ analyses where instead a pre-defined set of metabolites are measured. Targeted methods can be designed to be more sensitive and quantitative and so are particularly appropriate to systems biology for quantitative models of systems or when metabolomics is performed in a hypothesis driven manner to test whether a particular pathway is perturbed. We describe a targeted metabolomics assay that quantifies a broad range of over 130 metabolites relevant to cardiac metabolism including the pathways of the citric acid cycle, fatty acid oxidation, glycolysis, the pentose phosphate pathway, amino acid metabolism, the urea cycle, nucleotides and reactive oxygen species using tandem mass spectrometry to produce quantitative, sensitive and robust data. This assay is illustrated by profiling cardiac metabolism in a lamin A/C (Lmna) mouse model of dilated cardiomyopathy (DCM). The model of DCM was characterised by increases in concentrations of proline and methyl-histidine suggestive of increased myofibrillar and collagen degradation, as well as decreases in a number of citric acid cycle intermediates and carnitine derivatives indicating reduced energy metabolism in the dilated heart. These assays could be used for any other cardiac or cardiovascular disease in that they cover central core metabolism and key pathways involved in cardiac metabolism, and may provide a general start for many mammalian systems.

Collaboration


Dive into the James A. West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Ashmore

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernadette O. Fernandez

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge