Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Arthos is active.

Publication


Featured researches published by James Arthos.


Nature | 2002

HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites

Peter D. Kwong; Michael L. Doyle; David J. Casper; Claudia Cicala; Stephanie Leavitt; Shahzad Majeed; Tavis D. Steenbeke; Miro Venturi; Irwin M. Chaiken; Michael Fung; Hermann Katinger; Paul W. I. H. Parren; James E. Robinson; Donald Van Ryk; Liping Wang; Dennis R. Burton; Ernesto Freire; Richard T. Wyatt; Joseph Sodroski; Wayne A. Hendrickson; James Arthos

The ability of human immunodeficiency virus (HIV-1) to persist and cause AIDS is dependent on its avoidance of antibody-mediated neutralization. The virus elicits abundant, envelope-directed antibodies that have little neutralization capacity. This lack of neutralization is paradoxical, given the functional conservation and exposure of receptor-binding sites on the gp120 envelope glycoprotein, which are larger than the typical antibody footprint and should therefore be accessible for antibody binding. Because gp120–receptor interactions involve conformational reorganization, we measured the entropies of binding for 20 gp120-reactive antibodies. Here we show that recognition by receptor-binding-site antibodies induces conformational change. Correlation with neutralization potency and analysis of receptor–antibody thermodynamic cycles suggested a receptor-binding-site ‘conformational masking’ mechanism of neutralization escape. To understand how such an escape mechanism would be compatible with virus–receptor interactions, we tested a soluble dodecameric receptor molecule and found that it neutralized primary HIV-1 isolates with great potency, showing that simultaneous binding of viral envelope glycoproteins by multiple receptors creates sufficient avidity to compensate for such masking. Because this solution is available for cell-surface receptors but not for most antibodies, conformational masking enables HIV-1 to maintain receptor binding and simultaneously to resist neutralization.


Nature | 2007

Structural definition of a conserved neutralization epitope on HIV-1 gp120.

Tongqing Zhou; Ling Xu; Barna Dey; Ann J. Hessell; Donald Van Ryk; Shi Hua Xiang; Xinzhen Yang; Mei Yun Zhang; Michael B. Zwick; James Arthos; Dennis R. Burton; Dimiter S. Dimitrov; Joseph Sodroski; Richard T. Wyatt; Gary J. Nabel; Peter D. Kwong

The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 Å resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.


Nature | 2011

Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9

Jason S. McLellan; Marie Pancera; Chris Carrico; Jason Gorman; Jean-Philippe Julien; Reza Khayat; Robert K. Louder; Robert Pejchal; Mallika Sastry; Kaifan Dai; Sijy O’Dell; Nikita Patel; Syed Shahzad-ul-Hussan; Yongping Yang; Baoshan Zhang; Tongqing Zhou; Jiang Zhu; Jeffrey C. Boyington; Gwo-Yu Chuang; Devan Diwanji; Ivelin S. Georgiev; Young Do Kwon; Doyung Lee; Mark K. Louder; Stephanie Moquin; Stephen D. Schmidt; Zhi-Yong Yang; Mattia Bonsignori; John A. Crump; Saidi Kapiga

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which—with PG9—involves a site of vulnerability comprising just two glycans and a strand.


Journal of Experimental Medicine | 2008

Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals

Susan Moir; Jason Ho; Angela Malaspina; Wei-wei Wang; Angela C. DiPoto; Marie A. O'Shea; Gregg Roby; Shyam Kottilil; James Arthos; Michael A. Proschan; Tae-Wook Chun; Anthony S. Fauci

Human immunodeficiency virus (HIV) disease leads to impaired B cell and antibody responses through mechanisms that remain poorly defined. A unique memory B cell subpopulation (CD20hi/CD27lo/CD21lo) in human tonsillar tissues was recently defined by the expression of the inhibitory receptor Fc-receptor-like-4 (FCRL4). In this study, we describe a similar B cell subpopulation in the blood of HIV-viremic individuals. FCRL4 expression was increased on B cells of HIV-viremic compared with HIV-aviremic and HIV-negative individuals. It was enriched on B cells with a tissuelike memory phenotype (CD20hi/CD27−/CD21lo) when compared with B cells with a classical memory (CD27+) or naive (CD27−/CD21hi) B cell phenotype. Tissuelike memory B cells expressed patterns of homing and inhibitory receptors similar to those described for antigen-specific T cell exhaustion. The tissuelike memory B cells proliferated poorly in response to B cell stimuli, which is consistent with high-level expression of multiple inhibitory receptors. Immunoglobulin diversities and replication histories were lower in tissuelike, compared with classical, memory B cells, which is consistent with premature exhaustion. Strikingly, HIV-specific responses were enriched in these exhausted tissuelike memory B cells, whereas total immunoglobulin and influenza-specific responses were enriched in classical memory B cells. These data suggest that HIV-associated premature exhaustion of B cells may contribute to poor antibody responses against HIV in infected individuals.


Nature Immunology | 2008

HIV-1 envelope protein binds to and signals through integrin |[alpha]|4|[beta]|7, the gut mucosal homing receptor for peripheral T cells

James Arthos; Claudia Cicala; Elena Martinelli; Katilyn Macleod; Donald Van Ryk; Danlan Wei; Zhen Xiao; Timothy D. Veenstra; Thomas P Conrad; Richard A. Lempicki; Sherry McLaughlin; Massimiliano Pascuccio; Ravindra Gopaul; Jonathan P. McNally; Catherine C. Cruz; Nina Censoplano; Eva Chung; Kristin N. Reitano; Shyam Kottilil; Diana Goode; Anthony S. Fauci

Infection with human immunodeficiency virus 1 (HIV-1) results in the dissemination of virus to gut-associated lymphoid tissue. Subsequently, HIV-1 mediates massive depletion of gut CD4+ T cells, which contributes to HIV-1-induced immune dysfunction. The migration of lymphocytes to gut-associated lymphoid tissue is mediated by integrin α4β7. We demonstrate here that the HIV-1 envelope protein gp120 bound to an activated form of α4β7. This interaction was mediated by a tripeptide in the V2 loop of gp120, a peptide motif that mimics structures presented by the natural ligands of α4β7. On CD4+ T cells, engagement of α4β7 by gp120 resulted in rapid activation of LFA-1, the central integrin involved in the establishment of virological synapses, which facilitate efficient cell-to-cell spreading of HIV-1.


Nature | 1997

Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor.

Drew Weissman; Ronald L. Rabin; James Arthos; Andrea Rubbert; Mark Dybul; Ruth Swofford; Sundararajan Venkatesan; Joshua M. Farber; Anthony S. Fauci

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) enter target cells by forming a complex between the viral envelope protein and two cell-surface membrane receptors: CD4 and a 7-span transmembrane chemokine receptor (reviewed in refs 1,2,3). Isolates of HIV that differ in cellular tropism use different subsets of chemokine receptors as entry cofactors: macrophage-tropic HIVs primarily use CCR5, whereas T-cell-tropic and dual-tropic isolates use CXCR4 (refs 1,2,3) receptors. HIV-mediated signal transduction through CCR5 is not required for efficient fusion and entry of HIV in vitro. Here we show that recombinant envelope proteins from macrophage-tropic HIV and SIV induce a signal through CCR5 on CD4+ T cells and that envelope-mediated signal transduction through CCR5 induces chemotaxis of T cells. This chemotactic response may contribute to the pathogenesis of HIV in vivo by chemo-attracting activated CD4+ cells to sites of viral replication. HIV-mediated signalling through CCR5 may also enhance viral replication invivo by increasing the activation state of target cells. Alternatively, envelope-mediated CCR5 signal transduction may influence viral-associated cytopathicity or apoptosis.


Cell | 1989

Identification of the residues in human CD4 critical for the binding of HIV.

James Arthos; Keith Charles Deen; Margery A. Chaikin; James Allan Fornwald; Ganesh Sathe; Quentin J. Sattentau; Paul R. Clapham; Robin A. Weiss; J. Steven McDougal; Concetta Pietropaolo; Richard Axel; Alemseged Truneh; Paul J. Maddon; Raymond Sweet

The CD4 molecule is a T cell surface glycoprotein that interacts with high affinity with the envelope glycoprotein of the human immunodeficiency virus, HIV, thus serving as a cellular receptor for this virus. To define the sites on CD4 essential for binding to gp120, we produced several truncated, soluble derivatives of CD4 and a series of 26 substitution mutants. Quantitative binding analyses with the truncated proteins demonstrate that the determinants for high affinity binding lie solely with the first 106 amino acids of CD4 (the V1 domain), a region having significant sequence homology to immunoglobulin variable regions. Analysis of the substitution mutants further defines a discrete binding site within this domain that overlaps a region structurally homologous to the second complementarity-determining region of antibody variable domains. Finally, we demonstrate that the inhibition of virus infection and virus-mediated cell fusion by soluble CD4 proteins depends on their association with gp120 at this binding site.


Science | 2009

Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120.

Lei Chen; Young Do Kwon; Tongqing Zhou; Xueling Wu; Sijy O'Dell; Lisa A. Cavacini; Ann J. Hessell; Marie Pancera; Min Tang; Ling Xu; Zhi Yong Yang; Mei Yun Zhang; James Arthos; Dennis R. Burton; Dimiter S. Dimitrov; Gary J. Nabel; Marshall R. Posner; Joseph Sodroski; Richard T. Wyatt; John R. Mascola; Peter D. Kwong

Anti-HIV Antibody Constraints Despite significant efforts, an effective vaccine against the HIV-1 virus remains elusive. A site on the HIV-1 gp120 envelope glycoprotein that binds to the CD4 receptor on host cells is vulnerable to antibody, but only rarely are antibodies against this site broadly neutralizing. L. Chen et al. (p. 1123) have determined crystal structures for two weakly neutralizing antibodies in complex with gp120. The epitopes recognized by these antibodies were similar to those bound by CD4 or a broadly neutralizing antibody. However, small differences in recognition induced conformational shifts in gp120 that were incompatible with formation of a functional viral spike. Thus, the antibody-vulnerable site on HIV-1 is protected by conformational constraints. Conformational variability in an HIV coat protein complicates the therapeutic targeting of HIV-1. The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4–binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The integrin α4β7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1

Claudia Cicala; Elena Martinelli; Jonathan P. McNally; Diana Goode; Ravindra Gopaul; Joseph Hiatt; Katija Jelicic; Shyamasundaran Kottilil; Katilyn Macleod; Angeline O'Shea; Nikita Patel; Donald Van Ryk; Danlan Wei; Massimiliano Pascuccio; Ling Yi; Lyle R. McKinnon; Preson Izulla; Joshua Kimani; Rupert Kaul; Anthony S. Fauci; James Arthos

Both activated and resting CD4+ T cells in mucosal tissues play important roles in the earliest phases of infection after sexual transmission of HIV-1, a process that is inefficient. HIV-1 gp120 binds to integrin α4β7 (α4β7), the gut mucosal homing receptor. We find that α4β7high CD4+ T cells are more susceptible to productive infection than are α4β7low-neg CD4+ T cells in part because this cellular subset is enriched with metabolically active CD4+ T cells. α4β7high CD4+ T cells are CCR5high and CXCR4low; on these cells, α4β7 appears in a complex with CD4. The specific affinity of gp120 for α4β7 provides a mechanism for HIV-1 to target activated cells that are critical for efficient virus propagation and dissemination following sexual transmission.


Proceedings of the National Academy of Sciences of the United States of America | 2007

HIV-1 gp120 inhibits TLR9-mediated activation and IFN-α secretion in plasmacytoid dendritic cells

Elena Martinelli; Claudia Cicala; Donald Van Ryk; Diana Goode; Katilyn Macleod; James Arthos; Anthony S. Fauci

Plasmacytoid dendritic cells (pDCs) play a central role in innate and adaptive immune responses against viral infections. pDCs secrete type I IFNs and proinflammatory cytokines upon stimulation by either TLR7 or TLR9. Throughout the course of HIV infection, the production of type-I IFNs is profoundly impaired, and total pDC cell counts in peripheral blood correlates inversely with viral load and positively with CD4+ T cell count. The origin of these defects is unclear. pDCs express CD4, CCR5, and CXCR4, the primary receptor and coreceptors, respectively, for the HIV envelope; yet little is known concerning the effects of the viral envelope on these cells. Here, we show that exposure of pDCs to gp120 results in the suppression of activation of these cells. This suppression is specific for TLR9-mediated responses, because TLR7-mediated responses are unaffected by gp120. gp120 also suppressed TLR9-mediated induction of proinflammatory cytokines and expression of CD83, a marker of DC activation. Finally, gp120 suppressed pDC-induced cytolytic activity of natural killer cells. Taken together, these data demonstrate that the direct interaction of HIV-1 gp120 with pDCs interferes with TLR9 activation resulting in a decreased ability of pDCs to secrete antiviral and inflammatory factors that play a central role in initiating host immune responses against invading pathogens.

Collaboration


Dive into the James Arthos's collaboration.

Top Co-Authors

Avatar

Claudia Cicala

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anthony S. Fauci

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Donald Van Ryk

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fatima Nawaz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Katija Jelicic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Danlan Wei

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shan Lu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge