James B. Clendenning
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James B. Clendenning.
Pharmacogenetics | 2001
Victoria H. Brophy; Michele D. Hastings; James B. Clendenning; Rebecca J. Richter; Gail P. Jarvik; Clement E. Furlong
Paraoxonase (PON1) is a protein component of high-density lipoprotein (HDL) particles that protects against oxidative damage to both low-density lipoprotein and HDL and detoxifies organophosphorus pesticides and nerve agents. A wide range of expression levels of PON1 among individuals has been observed. We examined the promoter region of PON1 for genetic factors that might affect PON1 activity levels. We conducted a deletion analysis of the PON1 promoter region in transient transfection assays and found that cell-type specific promoter elements for liver and kidney are present in the first 200bp upstream of the coding sequence. Sequence analysis of DNA from a BAC clone and a YAC clone identified five polymorphisms in the first 1000 bases upstream of the coding region at positions -108, -126, -162, -832 and -909. Additionally, the promoter sequences of two individuals expressing high levels of PON1 and two individuals expressing low levels of PON1 were analysed. The two polymorphisms at -126 and -832 had no apparent effect on expression level in the reporter gene assay. The polymorphisms at position -909, -162 (a potential NF-I transcription factor binding site) and -108 (a potential SP1 binding site) each have approximately a two-fold effect on expression level. The expression level effects of the three polymorphisms appear not to be strictly additive and may depend on context effects.
Biosensors and Bioelectronics | 1998
Richard G. Woodbury; Cecilia Wendin; James B. Clendenning; Jose L. Melendez; Jerry Elkind; Dwight U. Bartholomew; Stanley Brown; Clement E. Furlong
Surface plasmon resonance (SPR) biosensors were constructed on miniature integrated sensors. Recognition elements were attached to the sensor surface using a gold-binding repeating polypeptide. Biosensors with fluorescyl groups attached to their surfaces were functional for at least 1 month of daily use with little decrease in response to the binding of an anti-fluorescyl monoclonal antibody. The coupling of protein A to the gold-binding polypeptide on the sensor surface enabled the biosensor to detect the binding of antibodies to the protein A and provided a sensor with convertible specificity. The system described herein provides a simple and rapid approach for the fabrication of highly specific, durable, portable and low cost SPR-based biosensors.
Sensors and Actuators B-chemical | 1998
Garet G. Nenninger; James B. Clendenning; Clement E. Furlong; Sinclair S. Yee
Abstract We present the design and experimental verification for a surface plasmon resonance (SPR) bio-sensor system using a second sensor channel for reference compensation during antibody–antigen binding experiments. Using a lightpipe configuration SPR sensor with two sensor surfaces and flow cell volumes, we demonstrate the use of the second sensor channel, with functionalisation different than the primary sensor channel, to compensate for changes in the refractive index of the bulk solution caused by analyte concentration or temperature differences.
Time-Resolved Laser Spectroscopy in Biochemistry IV | 1994
Bryant S. Fujimoto; James B. Clendenning; Jeffrey J. Delrow; Patrick J. Heath; J. Michael Schurr
Complexes of methylene blue with DNA are characterized by time- resolved fluorescence spectroscopy and transient photobleaching methods. At least four, and probably five, spectroscopically distinct binding sites have been identified. Three of these (components 1, 2, and 3B) dominate the fluorescence decay at low ionic strength and have fluorescence lifetimes significantly different from that of the free dye. With increasing ionic strength a fourth component (3A) appears at the expense of components 1 and 3B. Component 3A exhibits two subcomponents with different degrees of shielding from O2 quenching of its triplet state. The relative amplitudes of the components at low ionic strength are strongly dependent on the composition of the DNA, and independent of superhelix density. Hence, it is inferred that components 1, 2, and 3B represent binding to different base pair steps, and that all of these components represent intercalation sites that unwind the DNA to the same degree. Component 3A is apparently not intercalated. From plots of the relative photobleach amplitudes versus the relative fluorescence intensities, we infer that the triplet yield and photobleach amplitude are dominated by components 3A and/or 3B under nearly all conditions. Our results are used to discuss the suitability of methylene blue as the extrinsic probe in transient photodichroism experiments.
Biophysical Chemistry | 1994
James B. Clendenning; Alexei N. Naimushin; Bryant S. Fujimoto; Doyle W. Stewart; J. Michael Schurr
Topoisomer distributions created by the action of topoisomerase I on p30 delta DNA in the presence of various concentrations of ethidium are measured and analyzed using recently developed theory to obtain the twist energy parameter (ET) that governs the free energy of supercoiling in each case. Competitive dialysis experiments to investigate the relative affinity of ethidium for linear and supercoiled DNAs at different binding ratios are assayed fluorometrically and the results are analyzed using related theory. The topoisomer distributions and fluorescence intensity ratios agree well with the theory, which is based on the assumption that the supercoiling free energy varies quadratically with the effective linking difference, regardless of ethidium binding or superhelix density. The topoisomer distribution experiments alone yield an average best-fit value, ET = 950 +/- 80, independent of ethidium binding ratio from r = 0 to 0.082, while the combined topoisomer distribution and ethidium binding experiments yield an average best-fit value, ET = 1030 +/- 90, which is essentially independent of ethidium binding ratio from r = 0 to 0.082 and superhelix density from sigma = 0 to (-)0.053. One may conclude that the supercoiling free-energy-varies quadratically with effective linking difference over the entire range of observed ethidium binding ratios and superhelix densities. The independently measured torsion constant (alpha) of p30 delta DNA is likewise essentially independent of superhelix density and ethidium binding ratio. The observed invariance of ET and alpha implies that the bending constant kappa beta is similarly invariant to superhelix density and ethidium binding ratio. The apparently ideal behavior displayed by p30 delta DNA is not exhibited by pBR322 DNA, which is discussed in the following companion paper.
Biophysical Chemistry | 1994
Alexei N. Naimushin; James B. Clendenning; Ug-Sung Kim; Lu Song; Bryant S. Fujimoto; Doyle W. Stewart; J. Michael Schurr
The value of the twist energy parameter (ET) of pBR322 is determined near zero superhelix density from topoisomer distributions created under various conditions. The resulting value, ET = 1155 +/- 65, at 37 degrees C is essentially unaffected by adding 10 mM Mg2+, or by changing the kind of Topo I from chicken-red-cell to calf-thymus. This value significantly exceeds that (ET = 950 +/- 80) measured for p30 delta DNA under identical conditions by the same method in the preceding paper. Decreasing the temperature from 37 to 21 degrees C yields a slightly larger value, ET = 1340 +/- 130, but the statistical significance of the increase is marginal. Attempts to determine reliable ET values for pBR322 at higher superhelix densities by ethidium binding were frustrated by the fact that good fits of the equilibrium dialysis results could not be achieved using a single value of ET. Moreover, the curves of apparent ET versus binding ratio r vary considerably from one preparation to another, and for a given preparation vary with time after cell lysis up to about seven weeks, after which they settle in to nearly reproducible behavior. The apparent ET values obtained from competitive dialysis experiments are typically rather low (ET approximately 700) for small r and nearly native superhelix density, and rise up to 1300 to 1500 with increasing binding ratio (up to r = 0.055) and decreasing negative superhelix density.(ABSTRACT TRUNCATED AT 250 WORDS)
Biophysical Chemistry | 1994
James B. Clendenning; J. Michael Schurr
A model is proposed for the binding of E. coli single strand binding protein (SSB) to supercoiled DNA. The basic tetrameric binding units of SSB are assumed to bind in pairs to the complementary single strands of a locally melted region. The cooperativity of the binding includes contributions from both protein-protein and base-pair stacking interactions. Each bound SSB tetramer is assumed to unwind l = 34 bp, which implies an unwinding angle of 3.27 turns. The resulting loss of superhelical strain is the essential driving force for binding SSB to supercoiled DNAs. All molecular parameters entering into the theory are estimated from available data, except for the composite binding constant (Ka), which is adjusted to best-fit the theory to the fluorescence quenching (FQ) and diffusion coefficient (D0) data of Langowski et al. Very good fits are obtained with optimum values of Ka that are consistent with estimates from other data. This binding model predicts several noteworthy features. (1) SSB binds essentially always in a single contiguous stack on a supercoiled plasmid, and relative fluctuations in stack length are quite small, in agreement with results of electron microscopy studies. (2) The progressive loss of superhelical strain with increasing bound ligand decreases the affinity of the DNA for SSB. This anti-cooperativity offsets the cooperativity of the binding and causes apparent saturation of the binding at rather low binding ratios. Consequently, over the limited span of the measurements, the FQ data can also be satisfactorily fitted by a non-cooperative model comprising a small number of independent sites. (3) When SSB binds to a population of different topoisomers, the distribution of linking differences of the resulting complexes is extremely narrow. Thus, SSB acts to level any differences in superhelical strain in a population of topoisomers. Finally, the effects of restricting binding to a region comprising only part of the plasmid are assessed.
Science | 2001
Derek W. Wood; João C. Setubal; Rajinder Kaul; Dave E. Monks; João Paulo Kitajima; Vagner K. Okura; Yang Zhou; Lishan Chen; Gwendolyn E. Wood; Nalvo F. Almeida; Lisa Woo; Yuching Chen; Ian T. Paulsen; Jonathan A. Eisen; Peter D. Karp; Donald Bovee; Peter Chapman; James B. Clendenning; Glenda Deatherage; Will Gillet; Charles E. Grant; Tatyana Kutyavin; Ruth Levy; Meng-Jin Li; Erin K. McClelland; Anthony Palmieri; Christopher K. Raymond; Gregory Rouse; Channakhone Saenphimmachak; Zaining Wu
American Journal of Human Genetics | 2001
Victoria H. Brophy; Rachel L. Jampsa; James B. Clendenning; Laura A. McKinstry; Gail P. Jarvik; Clement E. Furlong
Journal of Molecular Biology | 1996
Patrick J. Heath; James B. Clendenning; Bryant S. Fujimoto; Michael J. Schurr