Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James B. Russell is active.

Publication


Featured researches published by James B. Russell.


Journal of Molecular Microbiology and Biotechnology | 2007

The Energy Spilling Reactions of Bacteria and Other Organisms

James B. Russell

For many years it was assumed that living organisms always utilized ATP in a highly efficient manner, but simple growth studies with bacteria indicated that the efficiency of biomass production was often at least 3-fold lower than the amount that would be predicted from standard biosynthetic pathways. The utilization of energy for maintenance could only explain a small portion of this discrepancy particularly when the growth rate was high. These ideas and thermodynamic arguments indicated that cells might have another avenue of energy utilization. This phenomenon has also been called ‘uncoupling’, ‘spillage’ and ‘overflow metabolism’, but ‘energy spilling’ is probably the most descriptive term. It appears that many bacteria spill energy, and the few that do not can be killed (large and often rapid decrease in viability), if the growth medium is nitrogen-limited and the energy source is in ‘excess’. The lactic acid bacterium, Streptococcus bovis, is an ideal bacterium for the study of energy spilling. Because it only uses substrate level phosphorylation to generate ATP, ATP generation can be calculated with a high degree of certainty. It does not store glucose as glycogen, and its cell membrane can be easily accessed. Comparative analysis of heat production, membrane voltage, ATP production and Ohm’s law indicated that the energy spilling reaction of S. bovis is mediated by a futile cycle of protons through the cell membrane. Less is known about Escherichia coli, but in this bacterium energy spilling could be mediated by a futile cycle of potassium or ammonium ions. Energy spilling is not restricted to prokaryotes and appears to occur in yeasts and in higher organisms. In man, energy spilling may be related to cancer, ageing, ischemia and cardiac failure.


FEMS Microbiology Ecology | 2009

Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen

James B. Russell; Richard E. Muck; Paul J. Weimer

Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be rechewed. By decreasing particle size, the cellulose surface area can be increased by up to 10(6)-fold. The amount of cellulose digested is then a function of two competing rates, namely the digestion rate (K(d)) and the rate of passage of solids from the rumen (K(p)). Estimation of bacterial growth on cellulose is complicated by several factors: (1) energy must be expended for maintenance and growth of the cells, (2) only adherent cells are capable of degrading cellulose and (3) adherent cells can provide nonadherent cells with cellodextrins. Additionally, when ruminants are fed large amounts of cereal grain along with fiber, ruminal pH can decrease to a point where cellulolytic bacteria no longer grow. A dynamic model based on STELLA software is presented. This model evaluates all of the major aspects of ruminal cellulose degradation: (1) ingestion, digestion and passage of feed particles, (2) maintenance and growth of cellulolytic bacteria and (3) pH effects.


Archives of Microbiology | 1990

ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis

James B. Russell; Herbert J. Strobel

When the ruminal bacterium Streptococcus bovis was grown in batch culture with glucose as the energy source, the doubling time was approximately 21 min and the rate of bacterial heat production was proportional to the optical density (1.72 μW/μg protein). If exponentially growing cultures were treated with chloramphenicol, there was a decline in heat production, but the rate was greater than 0.30 μW/μg protein even after growth ceased. Since there was no heat production after glucose depletion, this growth-independent energy dissipation (spilling) was not simply due to endogenous metabolism. Stationary cells which were washed and incubated in nitrogen-free medium containing an excess of glucose produced heat at a rate of 0.17 μW/μg protein. Monensin and tetrachlorosalicylanilide (TCS), compounds which facilitate an influx of protons, caused a more than 2-fold increase in heat production. Dicyclohexylcarbodiimide (DCCD) virtually eliminated growth-independent heat production regardless of the mode of growth inhibition. Because DCCD had little effect on the glucose phosphotransferase system, it appeared that the combined action of proton influx and the membrane bound F1F0 proton ATPase was responsible for energy spilling.


Archives of Microbiology | 1995

The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate by Clostridium acetobutylicum strain P262

Francisco Diez-Gonzalez; James B. Russell; Jean B. Hunter

Clostridium acetobutylicum strain P262 utilized lactate at a rapid rate [600 nmol min−1 (mg protein)−1], but lactate could not serve as the sole energy source. When acetate was provided as a co-substrate, the growth rate was 0.05h−1. Butyrate, carbon dioxide and hydrogen were the end products of lactate and acetate utilization, and the stoichiometry was 1 lactate + 0.4 acetate →0.7 butyrate + 0.6H2 + 1CO2. Lactate-grown cells had twofold lower hydrogenase than glucose-grown cells, and the lactate-grown cells used acetate as an alternative electron acceptor. The cells had a poor affinity for lactate (Ks=1.1 mM), and there was no evidence for active transport. Lactate utilization was catabolyzed by an inducible NAD-independent lactate dehydrogenase (iLDH) that had a pH optimum of 7.5. The iLDH was fivefold more active withd-lactate thanl-lactate, and theKm ford-lactate was 3.2 mM. Lactate-grown cells had little butyraldehyde dehydrogenase activity, and this defect did not allow the conversion of lactate to butanol.


British Journal of Nutrition | 1986

Production of tricarballylic acid by rumen microorganisms and its potential toxicity in ruminant tissue metabolism

James B. Russell; Neil E. Forsberg

1. Rumen microorganisms convert trans-aconitate to tricarballylate. The following experiments describe factors affecting the yield of tricarballylate, its absorption from the rumen into blood and its effect on mammalian citric acid cycle activity in vitro. 2. When mixed rumen microorganisms were incubated in vitro with Timothy hay (Phleum pratense L.) and 6.7 mM-trans-aconitate, 64% of the trans-aconitate was converted to tricarballylate. Chloroform and nitrate treatments inhibited methane production and increased the yield of tricarballylate to 82 and 75% respectively. 3. Sheep given gelatin capsules filled with 20 g trans-aconitate absorbed tricarballylate and the plasma concentration ranged from 0.3 to 0.5 mM 9 h after administration. Feeding an additional 40 g potassium chloride had little effect on plasma tricarballylate concentrations. Between 9 and 36 h there was a nearly linear decline in plasma tricarballylate. 4. Tricarballylate was a competitive inhibitor of the enzyme, aconitate hydratase (aconitase; EC 4.2.1.3), and the inhibitor constant, KI, was 0.52 mM. This KI value was similar to the Michaelis-Menten constant (Km) of the enzyme for citrate. 5. When liver slices from sheep were incubated with increasing concentrations of tricarballylate, [14C]acetate oxidation decreased. However, even at relatively high concentrations (8 mM), oxidation was still greater than 80% of the maximum. Oxidation of [14C]acetate by isolated rat liver cells was inhibited to a greater extent by tricarballylate. Concentrations as low as 0.5 mM caused a 30% inhibition of citric acid cycle activity.


Archives of Microbiology | 1991

A re-assessment of bacterial growth efficiency: the heat production and membrane potential of Streptococcus bovis in batch and continuous culture

James B. Russell

Glucose-limited, continuous cultures (dilution rate 0.1 h-1) of Streptococcus bovis JB1 fermented glucose at a rate of 3.9 μmol mg protein-1 h-1 and produced acctate, formate and ethanol. Based on a maximum ATP yield of 32 cells/mol ATP (Stouthamer 1973) and 3 ATP/glucose, the theoretical glucose consumption for growth would have been 2.1 μmol mg protein-1 h-1. Because the maintenance energy requirement was 1.7 μmol/mg protein/h (Russell and Baldwin 1979), virtually all of the glucose consumption could be explained by growth and maintenance and the YATP was 30. Glucose-limited, continuous cultures produced heat at a rate of 0.29 mW/mg protein, and this value was similar to the enthalpy change of the fermentation (0.32 mW/mg protein). Batch cultures (specific growth rate 2.0 h-1) fermented glucose at a rate of 81 μmol mg protein-1 h-1, and produced only lactate. The heat production was in close agreement with the theoretical enthalpy change (1.72 versus 1.70 mW/mg protein), but only 80% of the glucose consumption could be accounted by growth and maintenance. The YATP of the batch cultures was 25. Nitrogen-limited, glucose-excess, non-growing cultures fermented glucose at a rate of 6.9 μmol mg protein-1 h-1, and virtually all of the enthalpy for this homolactic fermentation could be accounted as heat (0.17 mW/mg protein). The nitrogenlimited cultures had a membrane potential of 150 mV, and nearly all of the heat production could be explained by a futile cycle of protons through the cell membrane (watts = amperes x voltage where H+/ATP was 3). The membrane voltage of the nitrogen-limited cells was higher than the glucose-limited continuous cultures (150 versus 80 mV), and this difference in voltage explained why nitrogen-limited cultures consumed glucose faster than the maintenance rate. Batch cultures had a membrane potential of 100 mV, and this voltage could not account for increased glucose consumption (more than growth plus maintenance). It appears that another mechanism causes the increased heat production and lower growth efficiency of batch cultures.


Current Microbiology | 2004

The effect of cellobiose, glucose, and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation.

Sheeja Thomas; James B. Russell

The ruminal, cellulolytic bacterium, Fibrobacter succinogenes A3C, grew rapidly on cellulose, cellobiose, or glucose, but it could not withstand long periods of energy source starvation. If ammonia was limiting and either cellobiose or glucose was in excess, the viability declined even faster. The carbohydrate-excess, ammonia-limited cultures did not spill energy, but they accumulated large amounts of cellular polysaccharide. Cultures that were carbohydrate-limited had approximately 4 nmol ATP mg cell protein−1, but ATP could not be detected in cultures that had an excess of soluble carbohydrates. However, if F. succinogenes A3C was provided with excess cellulose and ammonia was limiting, ATP did not decline, and the cultures digested the cellulose soon after additional nitrogen sources were added. From these results, it appears that excess soluble carbohydrates can promote the death of F. succinogenes, but cellulose does not.


Current Microbiology | 2004

Nutritional Requirements of Allisonella histaminiformans, a Ruminal Bacterium that Decarboxylates Histidine and Produces Histamine

Matthew R. Garner; Matthew R. Gronquist; James B. Russell

Histamine is an inflammatory agent that contributes to bovine laminitis. Cattle fed silage-containing rations often have large populations of Allisonella histaminiformans, but this obligate histidine-decarboxylating bacterium could not be isolated from cattle fed timothy hay. The growth of A. histaminiformans was stimulated by yeast extract, protein hydrolysates, and water-soluble extracts of alfalfa or corn silage. Extracts of alfalfa were more potent than corn silage. Because growth and histamine production were not stimulated by Casamino Acids or a mixture of purified amino acids, it appeared that A. histaminiformans requires peptides. The idea that A. histaminiformans requires peptides is consistent with the observation that alfalfa silages often have a large amount of peptide nitrogen.


Microbiology | 2000

Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion

Daniel R. Bond; James B. Russell

Because the DCCD (dicyclohexylcarbodiimide)-sensitive, F-ATPase-mediated, futile ATP hydrolysis of non-growing Streptococcus bovis JB1 cells was not affected by sodium or potassium, ATP hydrolysis appeared to be dependent only upon the rate of proton flux across the cell membrane. However, available estimates of bacterial proton conductance were too low to account for the rate of ATP turnover observed in S. bovis. When de-energized cells were subjected to large pH gradients (2.75 units, or -170 mV), internal pH declined at a rate of 0.15 pH units s(-1). Based on an estimated cellular buffering capacity of 200 nmol H+ (mg protein)(-1) per pH unit, H+ flux across the cell membrane (at -170 mV) was 108 mmol (g protein)(-1) h(-1). When potassium-loaded cells were treated with valinomycin in low-potassium buffers, initial K+ efflux generated membrane potentials in close agreement with values predicted by the Nernst equation. These artificial membrane potentials drove H+ uptake, and H+ influx was counterbalanced by a further loss of cellular K+. Flame photometry indicated that the rate of K+ loss was 215 (+/-26) mmol K+ (g protein)(-1) h(-1) at -170 mV, but the potassium-sensitive fluorescent compound CD222 indicated that this rate was only 110 (+/-44) mmol K+ (g protein)(-1) h(-1). As pH gradients or membrane potentials were reduced, the rate of H+ flux declined in a non-ohmic fashion, and all rates were <25 mmol (g protein)(-1) h(-1) at a driving force of -80 mV. Previous estimates of bacterial proton flux were based on low and unphysiological protonmotive forces, and the assumption that H+ influx rate would be ohmic. Rates of H+ influx into S. bovis cells [as high as 9x10(-11) mol H+ (cm membrane)(-2) s(-1)] were similar to rates reported for respiring mitochondria, but were at least 20-fold greater than any rate previously reported in lactic acid bacteria.


Fems Microbiology Letters | 2009

Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro

Janaína R. Lima; Andréa de O. Barros Ribon; James B. Russell; Hilário C. Mantovani

Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL(-1)) or monensin (5 microM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria.

Collaboration


Dive into the James B. Russell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert J. Strobel

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Bond

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge