Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Binney is active.

Publication


Featured researches published by James Binney.


Monthly Notices of the Royal Astronomical Society | 2010

Local kinematics and the local standard of rest

Ralph Schönrich; James Binney; Walter Dehnen

We re-examine the stellar kinematics of the solar neighbourhood in terms of the velocity υ� of the Sun with respect to the local standard of rest. We show that the classical determination of its component Vin the direction of Galactic rotation via Str¨ ombergs relation is undermined by the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties. Comparing the local stellar kinematics to a chemodynamical model which accounts for these effects, we obtain (U, V, W)� = (11.1 +0.69 −0.75 , 12.24 +0.47 −0.47 ,7 .25 +0.37 −0.36 )k m s −1 , with additional systematic uncertainties ∼(1, 2, 0.5) km s −1 . In particular, Vis 7 km s −1 larger than previously estimated. The new values of (U, V, W)� are extremely insensitive to the metallicity gradient within the disc.


Monthly Notices of the Royal Astronomical Society | 2002

Radial mixing in galactic discs

J. A. Sellwood; James Binney

We show that spiral waves in galaxy discs churn the stars and gas in a manner that largely preserves the overall angular momentum distribution and leads to little increase in random motion. Changes in the angular momenta of individual stars are typically as large as ∼50 per cent over the lifetime of the disc. The changes are concentrated around the corotation radius for an individual spiral wave, but since transient waves with a wide range of pattern speeds develop in rapid succession, the entire disc is affected. This behaviour has profound consequences for the metallicity gradients with radius in both stars and gas, since the interstellar medium is also stirred by the same mechanism. We find observational support for stirring, propose a simple model for the distribution of stars over metallicity and age, and discuss other possible consequences.


Scopus | 2006

The radial velocity experiment (RAVE): First data release

M. Steinmetz; A. Siebert; Harry Enke; C. Boeche; Andreas Kelz; R-D Scholz; Von Berlepsch R; Tomaž Zwitter; U. Jauregi; L. Mijovic; Daniel J. Eisenstein; Fred G. Watson; Quentin A. Parker; D. Burton; Cjp Cass; J. A. Dawe; Kristin Fiegert; Malcolm Hartley; K. S. Russell; Will Saunders; Joss Bland-Hawthorn; Kenneth C. Freeman; Megan Williams; Ulisse Munari; Massimo Fiorucci; A. Siviero; R. Sordo; R. Campbell; George M. Seabroke; G. Gilmore

We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, and surface gravity) of up to one million stars using the Six Degree Field multiobject spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory. The RAVE program started in 2003, obtaining medium-resolution spectra (median R 1⁄4 7500) in the Ca-triplet region (8410–8795 8) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9 < I < 12. The first data release is described in this paper and contains radial velocities for 24,748 individual stars (25,274 measurements when including reobservations). Those data were obtained on 67 nights between 2003 April 11 and 2004 April 3. The total sky coverage within this data release is 4760 deg. The average signal-to-noise ratio of the observed spectra is 29.5, and 80% of the radial velocities have uncertainties better than 3.4 km s . Combining internal errors and zero-point errors, the mode is found to be 2 km s . Repeat observations are used to assess the stability of our radial velocity solution, resulting in a variance of 2.8 km s . We demonstrate that the radial velocities derived for the first data set do not show any systematic trend with color or signal-to-noise ratio. The RAVE radial velocities are complemented in the data release with proper motions from Starnet 2.0, Tycho-2, and SuperCOSMOS, in addition to photometric data from the major optical and infrared catalogs (Tycho-2, USNO-B, DENIS, and the TwoMicron All Sky Survey). The data release can be accessed via the RAVE Web site.


Monthly Notices of the Royal Astronomical Society | 2009

Chemical evolution with radial mixing

Ralph Schönrich; James Binney

Models of the chemical evolution of our Galaxy are extended to include radial migration of stars and flow of gas through the disc. The models track the production of both iron and α-elements. A model is chosen that provides an excellent fit to the metallicity distribution of stars in the Geneva-Copenhagen survey (GCS) of the solar neighbourhood and a good fit to the local Hess diagram. The model provides a good fit to the distribution of GCS stars in the age-metallicity plane, although this plane was not used in the fitting process. Although this models star formation rate is monotonically declining, its disc naturally splits into an α-enhanced thick disc and a normal thin disc. In particular, the models distribution of stars in the ([O/Fe], [Fe/H]) plane resembles that of Galactic stars in displaying a ridge line for each disc. The thin-discs ridge line is entirely due to stellar migration, and there is the characteristic variation of stellar angular momentum along it that has been noted by Haywood in survey data. Radial mixing of stellar populations with high σ z from inner regions of the disc to the solar neighbourhood provides a natural explanation of why measurements yield a steeper increase of σ z with age than predicted by theory. The metallicity gradient in the interstellar medium is predicted to be steeper than in earlier models, but appears to be in good agreement with data for both our Galaxy and external galaxies. The models are inconsistent with a cut-off in the star formation rate at low gas surface densities. The absolute magnitude of the disc is given as a function of time in several photometric bands, and radial colour profiles are plotted for representative times.


Monthly Notices of the Royal Astronomical Society | 2007

The RAVE survey: constraining the local Galactic escape speed

M. Smith; Gregory R. Ruchti; Amina Helmi; Rosemary F. G. Wyse; Jon P. Fulbright; Kenneth C. Freeman; Julio F. Navarro; George M. Seabroke; Matthias Steinmetz; Mary E K Williams; Olivier Bienayme; James Binney; Joss Bland-Hawthorn; Walter Dehnen; Brad K. Gibson; Gerard Gilmore; Eva K. Grebel; Ulisse Munari; Quentin A. Parker; R.-D. Scholz; Arnaud Siebert; Fred G. Watson; Tomaž Zwitter

We report new constraints on the local escape speed of our Galaxy. Our analysis is based on a sample of high-velocity stars from the RAVE survey and two previously published data sets. We use cosmological simulations of disc galaxy formation to motivate our assumptions on the shape of the velocity distribution, allowing for a significantly more precise measurement of the escape velocity compared to previous studies. We find that the escape velocity lies within the range 498 <v(esc) <608 km s(-1) (90 per cent confidence), with a median likelihood of 544 km s(-1). The fact that v(esc)(2) is significantly greater than 2v(circ)(2) (where v(circ) = 220 km s(-1) is the local circular velocity) implies that there must be a significant amount of mass exterior to the solar circle, that is, this convincingly demonstrates the presence of a dark halo in the Galaxy. We use our constraints on v(esc) to determine the mass of the Milky Way halo for three halo profiles. For example, an adiabatically contracted NFW halo model results in a virial mass of 1.42(-0.54)(+1.14) x 10(12) M-circle dot and virial radius of (90 per cent confidence). For this model the circular velocity at the virial radius is 142(-21)(+31) km s(-1). Although our halo masses are model dependent, we find that they are in good agreement with each other.


The Astronomical Journal | 2006

THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE

Arnaud Siebert; Megan Williams; A. Siviero; C. Boeche; M. Steinmetz; Jon P. Fulbright; Ulisse Munari; Tomaž Zwitter; Fred G. Watson; R. F. G. Wyse; R. S. de Jong; Harry Enke; Borja Anguiano; D. Burton; C. J. P. Cass; Kristin Fiegert; Malcolm Hartley; A. Ritter; K. S. Russel; M. Stupar; Olivier Bienayme; Kenneth C. Freeman; G. Gilmore; Eva K. Grebel; Amina Helmi; Julio F. Navarro; James Binney; Joss Bland-Hawthorn; R. Campbell; Benoit Famaey

We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.


Monthly Notices of the Royal Astronomical Society | 2009

Origin and structure of the Galactic disc(s)

Ralph Schönrich; James Binney

We examine the chemical and dynamical structure in the solar neighbourhood of a model Galaxy that is the endpoint of a simulation of the chemical evolution of the Milky Way in the presence of radial mixing of stars and gas. Although the simulations star formation rate declines monotonically from its unique peak and no merger or tidal event ever takes place, the model replicates all known properties of a thick disc, as well as matching special features of the local stellar population such as a metal-poor extension of the thin disc that has high rotational velocity. We divide the disc by chemistry and relate this dissection to observationally more convenient kinematic selection criteria. We conclude that the observed chemistry of the Galactic disc does not provide convincing evidence for a violent origin of the thick disc, as has been widely claimed.


Nature | 2009

The role of black holes in galaxy formation and evolution

A. Cattaneo; Sandra M. Faber; James Binney; Avishai Dekel; John Kormendy; R. F. Mushotzky; Arif Babul; Philip Best; M. Brüggen; A. C. Fabian; Carlos S. Frenk; A. Khalatyan; H. Netzer; A. Mahdavi; Joseph Silk; Matthias Steinmetz; Lutz Wisotzki

Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.


Monthly Notices of the Royal Astronomical Society | 2005

Modified Newtonian dynamics in the Milky Way

Benoît Famaey; James Binney

Both microlensing surveys and radio-frequency observations of gas flow imply that the inner Milky Way is completely dominated by baryons, contrary to the predictions of standard cold dark matter (CDM) cosmology. We investigate the predictions of the modified Newtonian dynamics (MOND) formula for the Galaxy given the measured baryon distribution. Satisfactory fits to the observationally determined terminal-velocity curve are obtained for different choices of MOND’s interpolating function µ(x). However, with simple analytical forms of µ(x), the local circular speed v c(R 0) can be as large as 220 km s −1 only for values of the parameter a0 that are excluded by observations of NGC 3198. Only a numerically specified interpolating function can produce v c(R 0) = 220 km s −1 , which is therefore an upper limit in MOND, while the asymptotic velocity is predicted to be v c(∞) = 170 ± 5k m s −1 . The data are probably not consistent with the functional form of µ(x) that has been explored as a toy model in the framework of Bekenstein’s covariant theory of gravity. Ke yw ords: gravitation ‐ Galaxy: kinematics and dynamics.


Monthly Notices of the Royal Astronomical Society | 2004

Heating cooling flows with jets

Henrik Omma; James Binney; Greg L. Bryan; Adrianne Slyz

Active galactic nuclei are clearly heating gas in ‘cooling flows’. The effectiveness and spatial distribution of the heating are controversial. We use three-dimensional simulations on adaptive grids to study the impact on a cooling flow of weak, subrelativistic jets. The simulations show cavities and vortex rings as in the observations. The cavities are fast-expanding dynamical objects rather than buoyant bubbles as previously modelled, but shocks still remain extremely hard to detect with X-rays. At late times the cavities turn into overdensities that strongly excite the g modes of a cluster. These modes damp on a long time-scale. Radial mixing is shown to be an important phenomenon, but the jets weaken the metallicity gradient only very near the centre. The central entropy density is modestly increased by the jets. We use a novel algorithm to impose the jets on the simulations.

Collaboration


Dive into the James Binney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amina Helmi

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar

Kenneth C. Freeman

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred G. Watson

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge