James C. Culbertson
United States Naval Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James C. Culbertson.
Nano Letters | 2010
Jeremy T. Robinson; James S. Burgess; Chad E. Junkermeier; Stefan C. Badescu; Thomas L. Reinecke; F. Keith Perkins; Maxim K. Zalalutdniov; Jeffrey W. Baldwin; James C. Culbertson; Paul E. Sheehan; E. S. Snow
Graphene films grown on Cu foils have been fluorinated with xenon difluoride (XeF(2)) gas on one or both sides. When exposed on one side the F coverage saturates at 25% (C(4)F), which is optically transparent, over 6 orders of magnitude more resistive than graphene, and readily patterned. Density functional calculations for varying coverages indicate that a C(4)F configuration is lowest in energy and that the calculated band gap increases with increasing coverage, becoming 2.93 eV for one C(4)F configuration. During defluorination, we find hydrazine treatment effectively removes fluorine while retaining graphenes carbon skeleton. The same films may be fluorinated on both sides by transferring graphene to a silicon-on-insulator substrate enabling XeF(2) gas to etch the Si underlayer and fluorinate the backside of the graphene film to form perfluorographane (CF) for which calculated the band gap is 3.07 eV. Our results indicate single-side fluorination provides the necessary electronic and optical changes to be practical for graphene device applications.
Applied Physics Letters | 2009
Joseph L. Tedesco; Brenda L. VanMil; R. L. Myers-Ward; J. M. McCrate; S. A. Kitt; P. M. Campbell; Glenn G. Jernigan; James C. Culbertson; C.R. Eddy; D. K. Gaskill
Epitaxial graphene (EG) films were grown in vacuo by silicon sublimation from the (0001) and (0001¯) faces of 4H-SiC and 6H-SiC. Hall effect mobilities and sheet carrier densities of the films were measured at 300 and 77 K and the data depended on the growth face. About 40% of the samples exhibited holes as the dominant carrier, independent of face. Generally, mobilities increased with decreasing carrier density, independent of carrier type and substrate polytype. The contributions of scattering mechanisms to the conductivities of the films are discussed. The results suggest that for near-intrinsic carrier densities at 300 K epitaxial graphene mobilities will be ∼150 000 cm2 V−1 s−1 on the (0001¯) face and ∼5800 cm2 V−1 s−1 on the (0001) face.
ACS Nano | 2010
Joshua D. Caldwell; Anderson Tj; James C. Culbertson; Glenn G. Jernigan; Hobart Kd; Kub Fj; Tadjer Mj; Tedesco Jl; Hite Jk; Mastro Ma; Rachael L. Myers-Ward; Eddy Cr; Campbell Pm; Gaskill Dk
To make graphene technologically viable, the transfer of graphene films to substrates appropriate for specific applications is required. We demonstrate the dry transfer of epitaxial graphene (EG) from the C-face of 4H-SiC onto SiO(2), GaN and Al(2)O(3) substrates using a thermal release tape. Subsequent Hall effect measurements illustrated that minimal degradation in the carrier mobility was induced following the transfer process in lithographically patterned devices. Correspondingly, a large drop in the carrier concentration was observed following the transfer process, supporting the notion that a gradient in the carrier density is present in C-face EG, with lower values being observed in layers further removed from the SiC interface. X-ray photoemission spectra collected from EG films attached to the transfer tape revealed the presence of atomic Si within the EG layers, which may indicate the identity of the unknown intrinsic dopant in EG. Finally, this transfer process is shown to enable EG films amenable for use in device fabrication on arbitrary substrates and films that are deemed most beneficial to carrier transport, as flexible electronic devices or optically transparent contacts.
Journal of Crystal Growth | 2000
Allan S. Bracker; M. J. Yang; Brian R. Bennett; James C. Culbertson; W. J. Moore
Abstract : We present experimental flux-temperature phase diagrams for surface reconstruction transitions on the 6.1As compound semiconductors. The phase transitions occur within or near typical substrate temperature ranges for growth of these materials by molecular beam epitaxy and therefore provide a convenient temperature standard for optimizing growth conditions. Phase boundaries for InAs (0 0 1) [(2*4)->(4*2)], AlSb (0 0 1) [c(4*4)->(1*3)], and GaSb (0 0 1) [(2*5)_>(1*3)] are presented as a function of substrate temperature and Group V-limited growth rate (proportional to flux), for both cracked and uncracked Group V species. We discuss differences between materials in the slopes and offsets of the phase boundaries for both types of Group V species.
Nano Letters | 2010
Adam L. Friedman; Joseph L. Tedesco; P. M. Campbell; James C. Culbertson; E. H. Aifer; F. Keith Perkins; Rachael L. Myers-Ward; Jennifer K. Hite; Charles R. Eddy; Glenn G. Jernigan; D. Kurt Gaskill
We report the first observation of linear magnetoresistance (LMR) in multilayer epitaxial graphene grown on SiC. We show that multilayer epitaxial graphene exhibits large LMR from 2.2 K up to room temperature and that it can be best explained by a purely quantum mechanical model. We attribute the observation of LMR to inhomogeneities in the epitaxially grown graphene film. The large magnitude of the LMR suggests potential for novel applications in areas such as high-density data storage and magnetic sensors and actuators.
Applied Physics Letters | 2010
Joseph L. Tedesco; Glenn G. Jernigan; James C. Culbertson; Jennifer K. Hite; Y. Yang; K. M. Daniels; R. L. Myers-Ward; Charles R. Eddy; Joshua A. Robinson; Kathleen A. Trumbull; Maxwell Wetherington; P. M. Campbell; D. K. Gaskill
Epitaxial graphene layers were grown on the C-face of 4H–SiC and 6H–SiC using an argon-mediated growth process. Variations in growth temperature and pressure were found to dramatically affect the morphological properties of the layers. The presence of argon during growth slowed the rate of graphene formation on the C-face and led to the observation of islanding. The similarity in the morphology of the islands and continuous films indicated that island nucleation and coalescence is the growth mechanism for C-face graphene.
Applied Physics Letters | 1998
D. D. Koleske; A. E. Wickenden; R. L. Henry; M. E. Twigg; James C. Culbertson; R. J. Gorman
GaN decomposition is studied at metallorganic vapor phase epitaxy pressures (i.e., 10–700 Torr) in flowing H2. For temperatures ranging from 850 to 1050 °C, the GaN decomposition rate is accelerated when the H2 pressure is increased above 100 Torr. The Ga desorption rate is found to be independent of pressure, and therefore, does not account for the enhanced GaN decomposition rate. Instead, the excess Ga from the decomposed GaN forms droplets on the surface which, for identical annealing conditions, increase in size as the pressure is increased. Possible connections between the enhanced GaN decomposition rate, the coarsening of the nucleation layer during the ramp to high temperature, and increased GaN grain size at high temperature are discussed.
Small | 2012
Sarah M. Adams; Salvatore Campione; Joshua D. Caldwell; Francisco J. Bezares; James C. Culbertson; Filippo Capolino; Regina Ragan
Near-field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle-based cluster assemblies have exhibited signal enhancements in surface-enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low-cost fabrication methods. Here an innovative method is developed for fabricating self-organized clusters of metal nanoparticles on diblock copolymer thin films as SERS-active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self-organized chemically functionalized poly(methyl methacrylate) domains on polystyrene-block-poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub-10-nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 10⁹ while simultaneously producing uniform signal enhancements in point-to-point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full-wave electromagnetic simulations. Reusability for small-molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non-lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.
Scientific Reports | 2016
Kathleen M. McCreary; A. T. Hanbicki; Glenn G. Jernigan; James C. Culbertson; Berend T. Jonker
Monolayer WS2 offers great promise for use in optical devices due to its direct bandgap and high photoluminescence intensity. While fundamental investigations can be performed on exfoliated material, large-area and high quality materials are essential for implementation of technological applications. In this work, we synthesize monolayer WS2 under various controlled conditions and characterize the films using photoluminescence, Raman and x-ray photoelectron spectroscopies. We demonstrate that the introduction of hydrogen to the argon carrier gas dramatically improves the optical quality and increases the growth area of WS2, resulting in films exhibiting mm2 coverage. The addition of hydrogen more effectively reduces the WO3 precursor and protects against oxidative etching of the synthesized monolayers. The stoichiometric WS2 monolayers synthesized using Ar + H2 carrier gas exhibit superior optical characteristics, with photoluminescence emission full width half maximum (FWHM) values below 40 meV and emission intensities nearly an order of magnitude higher than films synthesized in a pure Ar environment.
Journal of Crystal Growth | 2001
J.A. Freitas; G.C.B. Braga; W.J. Moore; Joseph G. Tischler; James C. Culbertson; M. Fatemi; Sung Soo Park; Sung-Chul Lee; Y. Park
Structural and optical properties of thick (larger than 160 μm) freestanding hydride vapor phase epitaxy GaN templates have been investigated. AFM measurements showed that flat and smooth surface could be fabricated. High-resolution X-ray diffraction studies carried out with different spectrometer slit for the symmetric and asymmetric diffractions show that the linewidth increases with increasing slits width, indicating that a considerable degree of tilting and twisting of the individual grains are still present in these thick samples. Raman scattering measurements performed in a few samples indicate good crystalline quality and reduced strain. Very sharp and intense exciton related lines (FWHM less than 1 meV) have been observed in the low temperature photoluminescence spectra. Variable-temperature photoluminescence experiments were performed on both the growth surface and interface to identify the nature of the recombination processes observed in the luminescence spectra. FTIR absorption measurements show the presence of at least two donors with binding energy of 30.5 and 33.6 meV.