Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James C. Engert is active.

Publication


Featured researches published by James C. Engert.


JAMA | 2009

Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease.

Paul Elliott; John Campbell Chambers; Weihua Zhang; Robert Clarke; Jemma C. Hopewell; John F. Peden; Jeanette Erdmann; Peter S. Braund; James C. Engert; Derrick Bennett; Lachlan Coin; Deborah Ashby; Ioanna Tzoulaki; Ian J. Brown; Shahrul Mt-Isa; Mark McCarthy; Leena Peltonen; Nelson B. Freimer; Martin Farrall; Aimo Ruokonen; Anders Hamsten; Noha Lim; Philippe Froguel; Dawn M. Waterworth; Peter Vollenweider; Gérard Waeber; Marjo-Riitta Järvelin; Vincent Mooser; James Scott; Alistair S. Hall

CONTEXT Plasma levels of C-reactive protein (CRP) are independently associated with risk of coronary heart disease, but whether CRP is causally associated with coronary heart disease or merely a marker of underlying atherosclerosis is uncertain. OBJECTIVE To investigate association of genetic loci with CRP levels and risk of coronary heart disease. DESIGN, SETTING, AND PARTICIPANTS We first carried out a genome-wide association (n = 17,967) and replication study (n = 13,615) to identify genetic loci associated with plasma CRP concentrations. Data collection took place between 1989 and 2008 and genotyping between 2003 and 2008. We carried out a mendelian randomization study of the most closely associated single-nucleotide polymorphism (SNP) in the CRP locus and published data on other CRP variants involving a total of 28,112 cases and 100,823 controls, to investigate the association of CRP variants with coronary heart disease. We compared our finding with that predicted from meta-analysis of observational studies of CRP levels and risk of coronary heart disease. For the other loci associated with CRP levels, we selected the most closely associated SNP for testing against coronary heart disease among 14,365 cases and 32,069 controls. MAIN OUTCOME MEASURE Risk of coronary heart disease. RESULTS Polymorphisms in 5 genetic loci were strongly associated with CRP levels (% difference per minor allele): SNP rs6700896 in LEPR (-14.8%; 95% confidence interval [CI], -17.6% to -12.0%; P = 6.2 x 10(-22)), rs4537545 in IL6R (-11.5%; 95% CI, -14.4% to -8.5%; P = 1.3 x 10(-12)), rs7553007 in the CRP locus (-20.7%; 95% CI, -23.4% to -17.9%; P = 1.3 x 10(-38)), rs1183910 in HNF1A (-13.8%; 95% CI, -16.6% to -10.9%; P = 1.9 x 10(-18)), and rs4420638 in APOE-CI-CII (-21.8%; 95% CI, -25.3% to -18.1%; P = 8.1 x 10(-26)). Association of SNP rs7553007 in the CRP locus with coronary heart disease gave an odds ratio (OR) of 0.98 (95% CI, 0.94 to 1.01) per 20% lower CRP level. Our mendelian randomization study of variants in the CRP locus showed no association with coronary heart disease: OR, 1.00; 95% CI, 0.97 to 1.02; per 20% lower CRP level, compared with OR, 0.94; 95% CI, 0.94 to 0.95; predicted from meta-analysis of the observational studies of CRP levels and coronary heart disease (z score, -3.45; P < .001). SNPs rs6700896 in LEPR (OR, 1.06; 95% CI, 1.02 to 1.09; per minor allele), rs4537545 in IL6R (OR, 0.94; 95% CI, 0.91 to 0.97), and rs4420638 in the APOE-CI-CII cluster (OR, 1.16; 95% CI, 1.12 to 1.21) were all associated with risk of coronary heart disease. CONCLUSION The lack of concordance between the effect on coronary heart disease risk of CRP genotypes and CRP levels argues against a causal association of CRP with coronary heart disease.


PLOS ONE | 2008

Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies.

Brendan J. Keating; Sam E. Tischfield; Sarah S. Murray; Tushar Bhangale; Thomas S. Price; Joseph T. Glessner; Luana Galver; Jeffrey C. Barrett; Struan F. A. Grant; Deborah N. Farlow; Hareesh R. Chandrupatla; Mark Hansen; Saad Ajmal; George J. Papanicolaou; Yiran Guo; Mingyao Li; Paul I. W. de Bakker; Swneke D. Bailey; Alexandre Montpetit; Andrew C. Edmondson; Kent D. Taylor; Xiaowu Gai; Susanna S. Wang; Myriam Fornage; Tamim H. Shaikh; Leif Groop; Michael Boehnke; Alistair S. Hall; Andrew T. Hattersley; Edward C. Frackelton

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.


Nature Genetics | 2000

ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF.

James C. Engert; Pierre Bérubé; Jocelyne Mercier; Carole Doré; Pierre Lepage; Bing Ge; Jean-Pierre Bouchard; Jean Mathieu; Serge B. Melançon; Martin Schalling; Eric S. Lander; Kenneth Morgan; Thomas J. Hudson; Andrea Richter

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is an early onset neurodegenerative disease with high prevalence (carrier frequency 1/22) in the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region of Quebec. We previously mapped the gene responsible for ARSACS to chromosome 13q11 and identified two ancestral haplotypes. Here we report the cloning of this gene, SACS, which encodes the protein sacsin. The ORF of SACS is 11,487 bp and is encoded by a single gigantic exon spanning 12,794 bp. This exon is the largest to be identified in any vertebrate organism. The ORF is conserved in human and mouse. The putative protein contains three large segments with sequence similarity to each other and to the predicted protein of an Arabidopsis thaliana ORF. The presence of heat-shock domains suggests a function for sacsin in chaperone-mediated protein folding. SACS is expressed in a variety of tissues, including the central nervous system. We identified two SACSmutations in ARSACS families that lead to protein truncation, consistent with haplotype analysis.


Circulation | 2001

Common Genetic Variation in ABCA1 Is Associated With Altered Lipoprotein Levels and a Modified Risk for Coronary Artery Disease

Susanne M. Clee; Aeilko H. Zwinderman; James C. Engert; K.Y. Zwarts; H.O. Molhuizen; Kirsten Roomp; J.W. Jukema; M van Wijland; M van Dam; Thomas J. Hudson; Angela Brooks-Wilson; Jacques Genest; J.J.P. Kastelein; Michael R. Hayden

Background — Low plasma HDL cholesterol (HDL-C) is associated with an increased risk of coronary artery disease (CAD). We recently identified the ATP-binding cassette transporter 1 (ABCA1) as the major gene underlying the HDL deficiency associated with reduced cholesterol efflux. Mutations within the ABCA1 gene are associated with decreased HDL-C, increased triglycerides, and an increased risk of CAD. However, the extent to which common variation within this gene influences plasma lipid levels and CAD in the general population is unknown. Methods and Results — We examined the phenotypic effects of single nucleotide polymorphisms in the coding region of ABCA1. The R219K variant has a carrier frequency of 46% in Europeans. Carriers have a reduced severity of CAD, decreased focal (minimum obstruction diameter 1.81±0.35 versus 1.73±0.35 mm in noncarriers, P =0.001) and diffuse atherosclerosis (mean segment diameter 2.77±0.37 versus 2.70±0.37 mm, P =0.005), and fewer coronary events (50% versus 59%, P =0.02). Atherosclerosis progresses more slowly in carriers of R219K than in noncarriers. Carriers have decreased triglyceride levels (1.42±0.49 versus 1.84±0.77 mmol/L, P =0.001) and a trend toward increased HDL-C (0.91±0.22 versus 0.88±0.20 mmol/L, P =0.12). Other single nucleotide polymorphisms in the coding region had milder effects on plasma lipids and atherosclerosis. Conclusions — These data suggest that common variation in ABCA1 significantly influences plasma lipid levels and the severity of CAD.


Diabetes | 2008

Genetic Variants of FTO Influence Adiposity, Insulin Sensitivity, Leptin Levels, and Resting Metabolic Rate in the Quebec Family Study

Ron Do; Swneke D. Bailey; Katia Desbiens; Alexandre Belisle; Alexandre Montpetit; Claude Bouchard; Louis Pérusse; Marie-Claude Vohl; James C. Engert

OBJECTIVE—A genome-wide association study conducted by the Wellcome Trust Case Control Consortium recently associated single nucleotide polymorphisms (SNPs) in the FTO (fatso/fat mass and obesity associated) gene with type 2 diabetes. These associations were shown to be mediated by obesity. Other research groups found similar results in Europeans and Hispanics but not African Americans. The mechanism by which FTO influences obesity and type 2 diabetes is currently unknown. The present study investigated the role of two FTO SNPs (rs17817449 and rs1421085) in adiposity, insulin sensitivity, and body weight regulation, including energy intake and expenditure. RESEARCH DESIGN AND METHODS—We genotyped 908 individuals from the Quebec City metropolitan area that participated in the Quebec Family Study, a long-term study of extensively phenotyped individuals designed to investigate factors involved in adiposity. RESULTS—We found significant associations for both SNPs with several obesity-related phenotypes. In particular, rs17817449 was associated with BMI (P = 0.0014), weight (P = 0.0059), and waist circumference (P = 0.0021) under an additive model. In addition, this FTO SNP influenced fasting insulin (P = 0.011), homeostasis model assessment of insulin resistance (P = 0.038), and an insulin sensitivity index derived from an oral glucose tolerance test (P = 0.0091). Associations were also found with resting metabolic rate (RMR) (P = 0.042) and plasma leptin levels (P = 0.036). Adjustment for BMI abolished the associations with insulin sensitivity, RMR, and plasma leptin levels. CONCLUSIONS—These results confirm that genetic variation at the FTO locus contributes to the etiology of obesity, insulin resistance, and increased plasma leptin levels.


PLOS Medicine | 2012

Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias

Robert Clarke; Derrick Bennett; Sarah Parish; Petra Verhoef; Mariska Dötsch-Klerk; Mark Lathrop; Peng Xu; Børge G. Nordestgaard; Hilma Holm; Jemma C. Hopewell; Danish Saleheen; Toshihiro Tanaka; Sonia S. Anand; John Campbell Chambers; Marcus E. Kleber; Willem H. Ouwehand; Yoshiji Yamada; Clara C. Elbers; Bas Jm Peters; Alexandre F.R. Stewart; Muredach M. Reilly; Barbara Thorand; Salim Yusuf; James C. Engert; Themistocles L. Assimes; Js Kooner; John Danesh; Hugh Watkins; Nilesh J. Samani; Rory Collins

Robert Clarke and colleagues conduct a meta-analysis of unpublished datasets to examine the causal relationship between elevation of homocysteine levels in the blood and the risk of coronary heart disease. Their data suggest that an increase in homocysteine levels is not likely to result in an increase in risk of coronary heart disease.


Circulation-cardiovascular Genetics | 2012

A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex.

Robert W. Davies; George A. Wells; Alexandre F.R. Stewart; Jeanette Erdmann; Svati H. Shah; Jane F. Ferguson; Alistair S. Hall; Sonia S. Anand; Mary Susan Burnett; Stephen E. Epstein; Sonny Dandona; Li Chen; Janja Nahrstaedt; Christina Loley; Inke R. König; William E. Kraus; Christopher B. Granger; James C. Engert; Christian Hengstenberg; H.-Erich Wichmann; Stefan Schreiber; W.H. Wilson Tang; Stephen G. Ellis; Daniel J. Rader; Stanley L. Hazen; Muredach P. Reilly; Nilesh J. Samani; Heribert Schunkert; Robert Roberts; Ruth McPherson

Background— Recent genome-wide association studies (GWAS) have identified several novel loci that reproducibly associate with coronary artery disease (CAD) and/or myocardial infarction risk. However, known common CAD risk variants explain only 10% of the predicted genetic heritability of the disease, suggesting that important genetic signals remain to be discovered. Methods and Results— We performed a discovery meta-analysis of 5 GWAS involving 13 949 subjects (7123 cases, 6826 control subjects) imputed at approximately 5 million single nucleotide polymorphisms, using pilot 1000 Genomes–based haplotypes. Promising loci were followed up in an additional 5 studies with 11 032 subjects (5211 cases, 5821 control subjects). A novel CAD locus on chromosome 6p21.3 in the major histocompatibility complex (MHC) between HCG27 and HLA-C was identified and achieved genome-wide significance in the combined analysis (rs3869109; p discovery=3.3×10−7, p replication=5.3×10−4 p combined=1.12×10−9). A subanalysis combining discovery GWAS showed an attenuation of significance when stringent corrections for European population structure were used (P=4.1×10−10 versus 3.2×10−7), suggesting that the observed signal is partly confounded due to population stratification. This gene dense region plays an important role in inflammation, immunity, and self–cell recognition. To determine whether the underlying association was driven by MHC class I alleles, we statistically imputed common HLA alleles into the discovery subjects; however, no single common HLA type contributed significantly or fully explained the observed association. Conclusions— We have identified a novel locus in the MHC associated with CAD. MHC genes regulate inflammation and T-cell responses that contribute importantly to the initiation and propagation of atherosclerosis. Further laboratory studies will be required to understand the biological basis of this association and identify the causative allele(s).


Clinical Genetics | 2002

ABCA1 Regulatory Variants Influence Coronary Artery Disease Independent of Effects on Plasma Lipid Levels

K.Y. Zwarts; Susanne M. Clee; Aeilko H. Zwinderman; James C. Engert; Roshni R. Singaraja; O. Loubser; Erick R. James; Kirsten Roomp; Thomas J. Hudson; J.W. Jukema; J.J.P. Kastelein; Michael R. Hayden

The authors have previously shown that individuals heterozygous for ABCA1 mutations have decreased high density lipoprotein cholesterol, increased triglycerides and an increased frequency of coronary artery disease (CAD), and that single nucleotide polymorphisms (SNPs) in the coding region of the ABCA1 gene significantly impact plasma lipid levels and the severity of CAD in the general population. They have now identified several SNPs in non‐coding regions of ABCA1 which may be important for the appropriate regulation of ABCA1 expression (i.e. in the promoter, intron 1 and the 5′ untranslated region), and have examined the phenotypic effects of these SNPs in the REGRESS population. Out of 12 SNPs, four were associated with a clinical outcome. A threefold increase in coronary events with an increased family history of CAD was evident for the G‐191C variant. Similarly, the C69T SNP was associated with a twofold increase in events. In contrast, the C‐17G was associated with a decrease in coronary events and the InsG319 was associated with less atherosclerosis. For all these SNPs, the changes in atherosclerosis and CAD occurred without detectable changes in plasma lipid levels. These data suggest that common variation in non‐coding regions of ABCA1 may significantly alter the severity of atherosclerosis, without necessarily influencing plasma lipid levels.


JAMA | 2014

Association of Low-Density Lipoprotein Cholesterol–Related Genetic Variants With Aortic Valve Calcium and Incident Aortic Stenosis

J. Gustav Smith; Kevin Luk; Christina-Alexandra Schulz; James C. Engert; Ron Do; George Hindy; Gull Rukh; Line Dufresne; Peter Almgren; David S. Owens; Tamara B. Harris; Gina M. Peloso; Kathleen F. Kerr; Quenna Wong; Albert V. Smith; Matthew J. Budoff; Jerome I. Rotter; L. Adrienne Cupples; Stephen S. Rich; Sekar Kathiresan; Marju Orho-Melander; Vilmundur Gudnason; Christopher J. O'Donnell; Wendy S. Post; George Thanassoulis

IMPORTANCE Plasma low-density lipoprotein cholesterol (LDL-C) has been associated with aortic stenosis in observational studies; however, randomized trials with cholesterol-lowering therapies in individuals with established valve disease have failed to demonstrate reduced disease progression. OBJECTIVE To evaluate whether genetic data are consistent with an association between LDL-C, high-density lipoprotein cholesterol (HDL-C), or triglycerides (TG) and aortic valve disease. DESIGN, SETTING, AND PARTICIPANTS Using a Mendelian randomization study design, we evaluated whether weighted genetic risk scores (GRSs), a measure of the genetic predisposition to elevations in plasma lipids, constructed using single-nucleotide polymorphisms identified in genome-wide association studies for plasma lipids, were associated with aortic valve disease. We included community-based cohorts participating in the CHARGE consortium (n = 6942), including the Framingham Heart Study (cohort inception to last follow-up: 1971-2013; n = 1295), Multi-Ethnic Study of Atherosclerosis (2000-2012; n = 2527), Age Gene/Environment Study-Reykjavik (2000-2012; n = 3120), and the Malmö Diet and Cancer Study (MDCS, 1991-2010; n = 28,461). MAIN OUTCOMES AND MEASURES Aortic valve calcium quantified by computed tomography in CHARGE and incident aortic stenosis in the MDCS. RESULTS The prevalence of aortic valve calcium across the 3 CHARGE cohorts was 32% (n = 2245). In the MDCS, over a median follow-up time of 16.1 years, aortic stenosis developed in 17 per 1000 participants (n = 473) and aortic valve replacement for aortic stenosis occurred in 7 per 1000 (n = 205). Plasma LDL-C, but not HDL-C or TG, was significantly associated with incident aortic stenosis (hazard ratio [HR] per mmol/L, 1.28; 95% CI, 1.04-1.57; P = .02; aortic stenosis incidence: 1.3% and 2.4% in lowest and highest LDL-C quartiles, respectively). The LDL-C GRS, but not HDL-C or TG GRS, was significantly associated with presence of aortic valve calcium in CHARGE (odds ratio [OR] per GRS increment, 1.38; 95% CI, 1.09-1.74; P = .007) and with incident aortic stenosis in MDCS (HR per GRS increment, 2.78; 95% CI, 1.22-6.37; P = .02; aortic stenosis incidence: 1.9% and 2.6% in lowest and highest GRS quartiles, respectively). In sensitivity analyses excluding variants weakly associated with HDL-C or TG, the LDL-C GRS remained associated with aortic valve calcium (P = .03) and aortic stenosis (P = .009). In instrumental variable analysis, LDL-C was associated with an increase in the risk of incident aortic stenosis (HR per mmol/L, 1.51; 95% CI, 1.07-2.14; P = .02). CONCLUSIONS AND RELEVANCE Genetic predisposition to elevated LDL-C was associated with presence of aortic valve calcium and incidence of aortic stenosis, providing evidence supportive of a causal association between LDL-C and aortic valve disease. Whether earlier intervention to reduce LDL-C could prevent aortic valve disease merits further investigation.


American Journal of Human Genetics | 2007

Genetic Analysis of 103 Candidate Genes for Coronary Artery Disease and Associated Phenotypes in a Founder Population Reveals a New Association between Endothelin-1 and High-Density Lipoprotein Cholesterol

Guillaume Paré; David Serre; Diane Brisson; Sonia S. Anand; Alexandre Montpetit; Gérald Tremblay; James C. Engert; Thomas J. Hudson; Daniel Gaudet

Coronary artery disease (CAD) is a major health concern in both developed and developing countries. With a heritability estimated at ~50%, there is a strong rationale to better define the genetic contribution to CAD. This project involves the analysis of 884 individuals from 142 families (with average sibships of 5.7) as well as 558 case and control subjects from the Saguenay Lac St-Jean region of northeastern Quebec, with the use of 1,536 single-nucleotide polymorphisms (SNPs) in 103 candidate genes for CAD. By use of clusters of SNPs to generate multiallelic haplotypes at candidate loci for segregation studies within families, suggestive linkage for high-density lipoprotein (HDL) cholesterol is observed on chromosome 1p36.22. Furthermore, several associations that remain significant after Bonferroni correction are observed with lipoprotein-related traits as well as plasma concentrations of adiponectin. Of note, HDL cholesterol levels are associated with an amino acid substitution (lysine/asparagine) at codon 198 (rs5370) of endothelin-1 (EDN1) in a sex-specific manner, as well as with a SNP (rs2292318) located 7.7 kb upstream of lecithin cholesterol acyl-transferase (LCAT). Whereas the other observed associations are described in the current literature, these two are new. Using an independent validation sample of 806 individuals, we confirm the EDN1 association (P<.005), whereas the LCAT association was nonsignificant (P=.12).

Collaboration


Dive into the James C. Engert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Thanassoulis

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Salim Yusuf

Population Health Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Hudson

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Gaudet

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Do

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge