Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James C. Errey is active.

Publication


Featured researches published by James C. Errey.


Nature | 2014

Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain

Andrew S. Doré; Krzysztof Okrasa; Jayesh C. Patel; Maria Josefa Serrano-Vega; Kirstie A. Bennett; Robert M. Cooke; James C. Errey; Ali Jazayeri; Samir A. Khan; Ben Tehan; Malcolm Peter Weir; Giselle R. Wiggin; Fiona H. Marshall

Metabotropic glutamate receptors are class C G-protein-coupled receptors which respond to the neurotransmitter glutamate. Structural studies have been restricted to the amino-terminal extracellular domain, providing little understanding of the membrane-spanning signal transduction domain. Metabotropic glutamate receptor 5 is of considerable interest as a drug target in the treatment of fragile X syndrome, autism, depression, anxiety, addiction and movement disorders. Here we report the crystal structure of the transmembrane domain of the human receptor in complex with the negative allosteric modulator, mavoglurant. The structure provides detailed insight into the architecture of the transmembrane domain of class C receptors including the precise location of the allosteric binding site within the transmembrane domain and key micro-switches which regulate receptor signalling. This structure also provides a model for all class C G-protein-coupled receptors and may aid in the design of new small-molecule drugs for the treatment of brain disorders.


Neuropharmacology | 2011

The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery.

Nathan Robertson; Ali Jazayeri; James C. Errey; Asma H. Baig; Edward Hurrell; Andrei Zhukov; Christopher J. Langmead; Malcolm Peter Weir; Fiona H. Marshall

G protein-coupled receptors (GPCRs) are one of the most important target classes in the central nervous system (CNS) drug discovery, however the fact they are integral membrane proteins and are unstable when purified out of the cell precludes them from a wide range of structural and biophysical techniques that are used for soluble proteins. In this study we demonstrate how protein engineering methods can be used to identify mutations which can both increase the thermostability of receptors, when purified in detergent, as well as biasing the receptor towards a specific physiologically relevant conformational state. We demonstrate this method for the adenosine A(2A) receptor and muscarinic M(1) receptor. The resultant stabilised receptors (known as StaRs) have a pharmacological profile consistent with the inverse agonist conformation. The stabilised receptors can be purified in large quantities, whilst retaining correct folding, thus generating reagents suitable for a broad range of structural and biophysical studies. In the case of the A(2A)-StaR we demonstrate that surface plasmon resonance can be used to profile the association and dissociation rates of a range of antagonists, a technique that can be used to improve the in vivo efficacy of receptor antagonists.


Journal of Medicinal Chemistry | 2013

Biophysical Fragment Screening of the β1-Adrenergic Receptor: Identification of High Affinity Arylpiperazine Leads Using Structure-Based Drug Design

John A. Christopher; Jason W Brown; Andrew S. Doré; James C. Errey; Markus Koglin; Fiona H. Marshall; David G. Myszka; Rebecca L. Rich; Christopher G. Tate; Benjamin G. Tehan; Tony Warne; Miles Congreve

Biophysical fragment screening of a thermostabilized β1-adrenergic receptor (β1AR) using surface plasmon resonance (SPR) enabled the identification of moderate affinity, high ligand efficiency (LE) arylpiperazine hits 7 and 8. Subsequent hit to lead follow-up confirmed the activity of the chemotype, and a structure-based design approach using protein–ligand crystal structures of the β1AR resulted in the identification of several fragments that bound with higher affinity, including indole 19 and quinoline 20. In the first example of GPCR crystallography with ligands derived from fragment screening, structures of the stabilized β1AR complexed with 19 and 20 were determined at resolutions of 2.8 and 2.7 Å, respectively.


Journal of Medicinal Chemistry | 2012

Identification of novel adenosine A(2A) receptor antagonists by virtual screening.

Christopher J. Langmead; Stephen P. Andrews; Miles Congreve; James C. Errey; Edward Hurrell; Fiona H. Marshall; Jonathan S. Mason; Christine Mary Richardson; Nathan Robertson; Andrei Zhukov; Malcolm Peter Weir

Virtual screening was performed against experimentally enabled homology models of the adenosine A2A receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11–13 from 5, pKI = 7.5–8.5, 13- to >100-fold selective versus adenosine A1; 14–16 from 1, pKI = 7.9–9.0, 19- to 59-fold selective).


Journal of Medicinal Chemistry | 2011

Biophysical Mapping of the Adenosine A2A Receptor

Andrei Zhukov; Stephen P. Andrews; James C. Errey; Nathan Robertson; Benjamin G. Tehan; Jonathan S. Mason; Fiona H. Marshall; Malcolm Peter Weir; Miles Congreve

A new approach to generating information on ligand receptor interactions within the binding pocket of G protein-coupled receptors has been developed, called Biophysical Mapping (BPM). Starting from a stabilized receptor (StaR), minimally engineered for thermostability, additional single mutations are then added at positions that could be involved in small molecule interactions. The StaR and a panel of binding site mutants are captured onto Biacore chips to enable characterization of the binding of small molecule ligands using surface plasmon resonance (SPR) measurement. A matrix of binding data for a set of ligands versus each active site mutation is then generated, providing specific affinity and kinetic information (KD, kon, and koff) of receptor–ligand interactions. This data set, in combination with molecular modeling and docking, is used to map the small molecule binding site for each class of compounds. Taken together, the many constraints provided by these data identify key protein–ligand interactions and allow the shape of the site to be refined to produce a high quality three-dimensional picture of ligand binding, thereby facilitating structure based drug design. Results of biophysical mapping of the adenosine A2A receptor are presented.


Nature | 2016

Extra-helical binding site of a glucagon receptor antagonist.

Ali Jazayeri; Andrew S. Doré; Daniel Lamb; Harini Krishnamurthy; Stacey M. Southall; Asma H. Baig; Andrea Bortolato; Markus Koglin; Nathan Robertson; James C. Errey; Stephen P. Andrews; Iryna Teobald; Alastair J. H. Brown; Robert M. Cooke; Malcolm Peter Weir; Fiona H. Marshall

Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined—for the corticotropin-releasing hormone receptor 1 (CRF1R)—which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors.


Nature | 2016

Intracellular allosteric antagonism of the CCR9 receptor

Christine Oswald; Mathieu Rappas; James Kean; Andrew S. Doré; James C. Errey; Kirstie A. Bennett; Francesca Deflorian; John A. Christopher; Ali Jazayeri; Jonathan S. Mason; Miles Congreve; Robert M. Cooke; Fiona H. Marshall

Chemokines and their G-protein-coupled receptors play a diverse role in immune defence by controlling the migration, activation and survival of immune cells. They are also involved in viral entry, tumour growth and metastasis and hence are important drug targets in a wide range of diseases. Despite very significant efforts by the pharmaceutical industry to develop drugs, with over 50 small-molecule drugs directed at the family entering clinical development, only two compounds have reached the market: maraviroc (CCR5) for HIV infection and plerixafor (CXCR4) for stem-cell mobilization. The high failure rate may in part be due to limited understanding of the mechanism of action of chemokine antagonists and an inability to optimize compounds in the absence of structural information. CC chemokine receptor type 9 (CCR9) activation by CCL25 plays a key role in leukocyte recruitment to the gut and represents a therapeutic target in inflammatory bowel disease. The selective CCR9 antagonist vercirnon progressed to phase 3 clinical trials in Crohn’s disease but efficacy was limited, with the need for very high doses to block receptor activation. Here we report the crystal structure of the CCR9 receptor in complex with vercirnon at 2.8 Å resolution. Remarkably, vercirnon binds to the intracellular side of the receptor, exerting allosteric antagonism and preventing G-protein coupling. This binding site explains the need for relatively lipophilic ligands and describes another example of an allosteric site on G-protein-coupled receptors that can be targeted for drug design, not only at CCR9, but potentially extending to other chemokine receptors.


ACS Chemical Biology | 2012

Fragment Screening of GPCRs Using Biophysical Methods: Identification of Ligands of the Adenosine A2A Receptor with Novel Biological Activity

Dan Chen; James C. Errey; Laura H. Heitman; Fiona H. Marshall; Adriaan P. IJzerman; Gregg Siegal

Fragment-based drug discovery (FBDD) has proven a powerful method to develop novel drugs with excellent oral bioavailability against challenging pharmaceutical targets such as protein-protein interaction targets. Very recently the underlying biophysical techniques have begun to be successfully applied to membrane proteins. Here we show that novel, ligand efficient small molecules with a variety of biological activities can be found by screening a small fragment library using thermostabilized (StaR) G protein-coupled receptors (GPCRs) and target immobilized NMR screening (TINS). Detergent-solubilized StaR adenosine A(2A) receptor was immobilized with retention of functionality, and a screen of 531 fragments was performed. Hits from the screen were thoroughly characterized for biochemical activity using the wild-type receptor. Both orthosteric and allosteric modulatory activity has been demonstrated in biochemical validation assays. Allosteric activity was confirmed in cell-based functional assays. The validated fragment hits make excellent starting points for a subsequent hit-to-lead elaboration program.


Journal of Medicinal Chemistry | 2015

Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile).

John A. Christopher; Sarah Joanne Aves; Kirstie A. Bennett; Andrew S. Doré; James C. Errey; Ali Jazayeri; Fiona H. Marshall; Krzysztof Okrasa; Maria Josefa Serrano-Vega; Benjamin G. Tehan; Giselle R. Wiggin; Miles Congreve

Fragment screening of a thermostabilized mGlu5 receptor using a high-concentration radioligand binding assay enabled the identification of moderate affinity, high ligand efficiency (LE) pyrimidine hit 5. Subsequent optimization using structure-based drug discovery methods led to the selection of 25, HTL14242, as an advanced lead compound for further development. Structures of the stabilized mGlu5 receptor complexed with 25 and another molecule in the series, 14, were determined at resolutions of 2.6 and 3.1 Å, respectively.


Analytical Biochemistry | 2011

Biacore analysis with stabilized G-protein-coupled receptors

Rebecca L. Rich; James C. Errey; Fiona H. Marshall; David G. Myszka

Using stabilized forms of β₁ adrenergic and A₂(A) adenosine G-protein-coupled receptors, we applied Biacore to monitor receptor activity and characterize binding constants of small-molecule antagonists spanning more than 20,000-fold in affinity. We also illustrate an improved method for tethering His-tagged receptors on NTA (carboxymethylated dextran preimmobilized with nitrilotriacetic acid) chips to yield stable, high-capacity, high-activity surfaces as well as a novel approach to regenerate receptor binding sites. Based on our success with this approach, we expect that the combination of stabilized receptors with biosensor technology will become a common method for characterizing members of this receptor family.

Collaboration


Dive into the James C. Errey's collaboration.

Top Co-Authors

Avatar

Fiona H. Marshall

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Robert M. Cooke

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Miles Congreve

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Ali Jazayeri

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Malcolm Peter Weir

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Nathan Robertson

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Andrei Zhukov

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Andrews

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Asma H. Baig

University of Hertfordshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge