Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James C. Paton is active.

Publication


Featured researches published by James C. Paton.


Nature Reviews Microbiology | 2008

The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease.

Aras Kadioglu; Jeffrey N. Weiser; James C. Paton; Peter W. Andrew

Streptococcus pneumoniae is a Gram-positive bacterial pathogen that colonizes the mucosal surfaces of the host nasopharynx and upper airway. Through a combination of virulence-factor activity and an ability to evade the early components of the host immune response, this organism can spread from the upper respiratory tract to the sterile regions of the lower respiratory tract, which leads to pneumonia. In this Review, we describe how S. pneumoniae uses its armamentarium of virulence factors to colonize the upper and lower respiratory tracts of the host and cause disease.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection

Richard Malley; Philipp Henneke; Sarah C. Morse; Michael J. Cieslewicz; Marc Lipsitch; Claudette M. Thompson; Evelyn A. Kurt-Jones; James C. Paton; Michael R. Wessels; Douglas T. Golenbock

Streptococcus pneumoniae is one of the leading causes of invasive bacterial disease worldwide. Fragments of the cell wall and the cytolytic toxin pneumolysin have been shown to contribute substantially to inflammatory damage, although the interactions between pneumococcal components and host-cell structures have not been elucidated completely. Results of a previous study indicated that cell-wall components of pneumococci are recognized by Toll-like receptor (TLR)2 but suggested that pneumolysin induces inflammatory events independently of this receptor. In this study we tested the hypothesis that pneumolysin interacts with surface proteins of the TLR family other than TLR2. We found that pneumolysin stimulates tumor necrosis factor-α and IL-6 release in wild-type macrophages but not in macrophages from mice with a targeted deletion of the cytoplasmic TLR-adapter molecule myeloid differentiation factor 88, suggesting the involvement of the TLRs in pneumolysin recognition. Purified pneumolysin synergistically activated macrophage responses together with preparations of pneumococcal cell walls or staphylococcal peptidoglycan, which are known to activate TLR2. Furthermore, when compared with wild-type macrophages, macrophages from mice that carry a spontaneous mutation in TLR4 (P712H) were hyporesponsive to both pneumolysin alone and the combination of pneumolysin with pneumococcal cell walls. Finally, these TLR4-mutant mice were significantly more susceptible to lethal infection after intranasal colonization with pneumolysin-positive pneumococci than were control mice. We conclude that the interaction of pneumolysin with TLR4 is critically involved in the innate immune response to pneumococcus.


Infection and Immunity | 2001

Characterization of Saa, a Novel Autoagglutinating Adhesin Produced by Locus of Enterocyte Effacement-Negative Shiga-Toxigenic Escherichia coli Strains That Are Virulent for Humans

Adrienne W. Paton; Potjanee Srimanote; Matthew C. Woodrow; James C. Paton

ABSTRACT The capacity of Shiga toxigenic Escherichia coli(STEC) to adhere to the intestinal mucosa undoubtedly contributes to pathogenesis of human disease. The majority of STEC strains isolated from severe cases produce attaching and effacing lesions on the intestinal mucosa, a property mediated by the locus of enterocyte effacement (LEE) pathogenicity island. This element is not essential for pathogenesis, as some cases of severe disease, including hemolytic uremic syndrome (HUS), are caused by LEE-negative STEC strains, but the mechanism whereby these adhere to the intestinal mucosa is not understood. We have isolated a gene from the megaplasmid of a LEE-negative O113:H21 STEC strain (98NK2) responsible for an outbreak of HUS, which encodes an auto-agglutinating adhesin designated Saa (STEC autoagglutinating adhesin). Introduction of saacloned in pBC results in a 9.7-fold increase in adherence of E. coli JM109 to HEp-2 cells and a semilocalized adherence pattern. Mutagenesis of saa in 98NK2, or curing the wild-type strain of its megaplasmid, resulted in a significant reduction in adherence. Homologues of saa were found in several unrelated LEE-negative STEC serotypes, including O48:H21 (strain 94CR) and O91:H21 (strain B2F1), which were also isolated from patients with HUS. Saa exhibits a low degree of similarity (25% amino acid [aa] identity) with YadA of Yersinia enterocolitica and Eib, a recently described phage-encoded immunoglobulin binding protein fromE. coli. Saa produced by 98NK2 is 516 aa long and includes four copies of a 37-aa direct repeat sequence. Interestingly, Saa produced by other STEC strains ranges in size from 460 to 534 aa as a consequence of variation in the number of repeats and/or other insertions or deletions immediately proximal to the repeat domain.


Molecular Microbiology | 1998

Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae

Tracey J. Coffey; Mark C. Enright; Maggie Daniels; Judy K. Morona; Renato Morona; Waleria Hryniewicz; James C. Paton; Brian G. Spratt

Serotype 19F variants of the major Spanish multiresistant serotype 23F clone of Streptococcus pneumoniae have been proposed to have arisen by recombinational exchanges at the capsular biosynthetic locus. Members of the Spanish multiresistant serotype 23F clone and the serotype 19F variants were confirmed to be essentially identical in overall genotype, as they were indistinguishable by REP‐PCR, and had identical sequences at three polymorphic housekeeping genes. Eight serotype 19F variants were studied and all had large recombinational replacements at the capsular biosynthetic locus. In all cases, one of the recombinational cross‐over points appeared to be upstream of dexBwhich flanks one end of the capsular locus, and in six of the variants the other cross‐over point was downstream of aliA, which flanks the other end of the locus. In two strains a recombinational cross‐over point between the introduced serotype 19F capsular region and that of the Spanish serotype 23F clone could be clearly identified, within cpsN in one strain and within cpsM in the other. The differences in the recombinational junctions and sequence polymorphisms within the introduced capsular genes, suggested that the eight serotype 19F variants emerged on at least four separate occasions. Changes in capsular type by recombination may therefore be relatively frequent in pneumococci and this has implications for the long‐term efficacy of conjugate pneumococcal vaccines that will protect against only a limited number of serotypes.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice

Jeremy S. Brown; Tracy Hussell; Sarah M. Gilliland; David W. Holden; James C. Paton; Michael R. Ehrenstein; Mark Walport; Marina Botto

The complement system is an important component of the innate immune response to bacterial pathogens, including Streptococcus pneumoniae. The classical complement pathway is activated by antibody–antigen complexes on the bacterial surface and has been considered predominately to be an effector of the adaptive immune response, whereas the alternative and mannose-binding lectin pathways are activated directly by bacterial cell surface components and are considered effectors of the innate immune response. Recently, a role has been suggested for the classical pathway during innate immunity that is activated by natural IgM or components of the acute-phase response bound to bacterial pathogens. However, the functional importance of the classical pathway for innate immunity to S. pneumoniae and other bacterial pathogens, and its relative contribution compared with the alternative and mannose-binding lectin pathways has not been defined. By using strains of mice with genetic deficiencies of complement components and secretory IgM we have investigated the role of each complement pathway and natural IgM for innate immunity to S. pneumoniae. Our results show that the proportion of a population of S. pneumoniae bound by C3 depends mainly on the classical pathway, whereas the intensity of C3 binding depends on the alternative pathway. Furthermore, the classical pathway, partially targeted by the binding of natural IgM to bacteria, is the dominant pathway for activation of the complement system during innate immunity to S. pneumoniae, loss of which results in rapidly progressing septicemia and impaired macrophage activation. These data demonstrate the vital role of the classical pathway for innate immunity to a bacterial pathogen.


Infection and Immunity | 2000

Intranasal Immunization of Mice with a Mixture of the Pneumococcal Proteins PsaA and PspA Is Highly Protective against Nasopharyngeal Carriage of Streptococcus pneumoniae

David E. Briles; Eddie Ades; James C. Paton; Jacquelyn S. Sampson; George M. Carlone; Robert C. Huebner; Anni Virolainen; Edwin Swiatlo; Susan K. Hollingshead

ABSTRACT Acquisition of pneumococci is generally from carriers rather than from infected individuals. Therefore, to induce herd immunity againstStreptococcus pneumoniae it will be necessary to elicit protection against carriage. Capsular polysaccharide-protein conjugates, PspA, and PsaA are known to elicit some protection against nasopharyngeal carriage of pneumococci but do not always completely eliminate carriage. In this study, we observed that PsaA elicited better protection than did PspA against carriage. Pneumolysin elicited no protection against carriage. Immunization with a mixture of PsaA and PspA elicited the best protection against carriage. These results indicate that PspA and PsaA may be useful for the elicitation of herd immunity in humans. As PspA and pneumolysin are known to elicit immunity to bacteremia and pneumonia, their inclusion in a mucosal vaccine may enable such a vaccine to prevent invasive disease as well as carriage.


Journal of Clinical Microbiology | 2002

Direct Detection and Characterization of Shiga Toxigenic Escherichia coli by Multiplex PCR for stx1, stx2, eae, ehxA, and saa

Adrienne W. Paton; James C. Paton

ABSTRACT We recently described a novel megaplasmid-encoded adhesin produced by certain Shiga toxigenic Escherichia coli (STEC) strains that lack the locus for enterocyte effacement (LEE) pathogenicity island. This adhesin, designated Saa (STEC autoagglutinating adhesin), may be a marker for a subset of LEE-negative STEC strains capable of causing severe gastrointestinal and systemic diseases in humans. In this study, we developed a pentavalent PCR assay for the detection of saa as well as other proven and putative STEC virulence genes (stx1, stx2, eae, and ehxA). The five primer pairs used in the assay do not interfere with each other and generate amplification products of 119, 180, 255, 384, and 534 bp.


Nature | 2006

Ab5 Subtilase Cytotoxin Inactivates the Endoplasmic Reticulum Chaperone Bip

Adrienne W. Paton; Travis Beddoe; Cheleste M. Thorpe; James C. Whisstock; Matthew C. J. Wilce; Jamie Rossjohn; Ursula M. Talbot; James C. Paton

AB5 toxins are produced by pathogenic bacteria and consist of enzymatic A subunits that corrupt essential eukaryotic cell functions, and pentameric B subunits that mediate uptake into the target cell. AB5 toxins include the Shiga, cholera and pertussis toxins and a recently discovered fourth family, subtilase cytotoxin, which is produced by certain Shiga toxigenic strains of Escherichia coli. Here we show that the extreme cytotoxicity of this toxin for eukaryotic cells is due to a specific single-site cleavage of the essential endoplasmic reticulum chaperone BiP/GRP78. The A subunit is a subtilase-like serine protease; structural studies revealed an unusually deep active-site cleft, which accounts for its exquisite substrate specificity. A single amino-acid substitution in the BiP target site prevented cleavage, and co-expression of this resistant protein protected transfected cells against the toxin. BiP is a master regulator of endoplasmic reticulum function, and its cleavage by subtilase cytotoxin represents a previously unknown trigger for cell death.


Journal of Experimental Medicine | 2004

A New Family of Potent AB5 Cytotoxins Produced by Shiga Toxigenic Escherichia coli

Adrienne W. Paton; Potjanee Srimanote; Ursula M. Talbot; Hui Wang; James C. Paton

The Shiga toxigenic Escherichia coli (STEC) O113:H21 strain 98NK2, which was responsible for an outbreak of hemolytic uremic syndrome, secretes a highly potent and lethal subtilase cytotoxin that is unrelated to any bacterial toxin described to date. It is the prototype of a new family of AB5 toxins, comprising a single 35-kilodalton (kD) A subunit and a pentamer of 13-kD B subunits. The A subunit is a subtilase-like serine protease distantly related to the BA_2875 gene product of Bacillus anthracis. The B subunit is related to a putative exported protein from Yersinia pestis, and binds to a mimic of the ganglioside GM2. Subtilase cytotoxin is encoded by two closely linked, cotranscribed genes (subA and subB), which, in strain 98NK2, are located on a large, conjugative virulence plasmid. Homologues of the genes are present in 32 out of 68 other STEC strains tested. Intraperitoneal injection of purified subtilase cytotoxin was fatal for mice and resulted in extensive microvascular thrombosis, as well as necrosis in the brain, kidneys, and liver. Oral challenge of mice with E. coli K-12–expressing cloned subA and subB resulted in dramatic weight loss. These findings suggest that the toxin may contribute to the pathogenesis of human disease.


Infection and Immunity | 2000

Additive Attenuation of Virulence of Streptococcus pneumoniae by Mutation of the Genes Encoding Pneumolysin and Other Putative Pneumococcal Virulence Proteins

Anne M. Berry; James C. Paton

ABSTRACT Although the polysaccharide capsule of Streptococcus pneumoniae has been recognized as a sine qua non of virulence, much recent attention has focused on the role of pneumococcal proteins in pathogenesis, particularly in view of their potential as vaccine antigens. The individual contributions of pneumolysin (Ply), the major neuraminidase (NanA), autolysin (LytA), hyaluronidase (Hyl), pneumococcal surface protein A (PspA), and choline-binding protein A (CbpA) have been examined by specifically mutagenizing the respective genes in the pneumococcal chromosome and comparing the impact on virulence in a mouse intraperitoneal challenge model. Mutagenesis of either the ply, lytA, or pspA gene in S. pneumoniae D39 significantly reduced virulence, relative to that of the wild-type strain, indicating that the respective gene products contribute to pathogenesis. On the other hand, mutations in nanA, hyl, or cbpA had no significant impact. The virulence of D39 derivatives carrying aply deletion mutation as well as an insertion-duplication mutation in one of the other genes was also examined. Mutagenesis of either nanA or lytA did not result in an additional attenuation of virulence in the ply deletion background. However, significant additive attenuation in virulence was observed for the strains with ply-hyl,ply-pspA, and ply-cbpA double mutations.

Collaboration


Dive into the James C. Paton's collaboration.

Top Co-Authors

Avatar

Adrienne W. Paton

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Briles

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

David Hansman

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne M. Berry

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Adrienne W. Paton

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Wang

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge