Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James C. Sutton is active.

Publication


Featured researches published by James C. Sutton.


Bioorganic & Medicinal Chemistry Letters | 2002

Synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors

James C. Sutton; Scott A. Bolton; Karen S. Hartl; Ming-Hsing Huang; Glenn Anthony Jacobs; Wei Meng; Martin L. Ogletree; Zulan Pi; William A. Schumacher; Steven M. Seiler; William A. Slusarchyk; Uwe D. Treuner; Robert Zahler; Guohua Zhao; Gregory S. Bisacchi

A series of N1-activated C4-carboxy azetidinones was prepared and tested as inhibitors of human tryptase. The key stereochemical and functional features required for potency, serine protease specificity and aqueous stability were determined. From these studies compound 2, BMS-262084, was identified as a potent and selective tryptase inhibitor which, when dosed intratracheally in ovalbumin-sensitized guinea pigs, reduced allergen-induced bronchoconstriction and inflammatory cell infiltration into the lung.


Bioorganic & Medicinal Chemistry Letters | 2002

Synthesis of potent and highly selective inhibitors of human tryptase

William A. Slusarchyk; Scott A. Bolton; Karen S. Hartl; Ming-Hsing Huang; Glenn Anthony Jacobs; Wei Meng; Martin L. Ogletree; Zulan Pi; William A. Schumacher; Steven M. Seiler; James C. Sutton; Uwe D. Treuner; Robert Zahler; Guohua Zhao; Gregory S. Bisacchi

The serine protease tryptase has been implicated in allergic and inflammatory diseases and associated with asthma. The synthesis and SAR of a series of N1-activated-4-carboxy azetidinones are described, resulting in identification of BMS-363131 (2) as a potent inhibitor of human tryptase (IC(50)<1.7 nM) with high selectivity (>3000-fold) for tryptase versus related serine proteases including trypsin.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyridine amides as potent and selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1

Haixia Wang; Zheming Ruan; James J. Li; Ligaya M. Simpkins; Rebecca A. Smirk; Shung C. Wu; Robert Hutchins; David S. Nirschl; Katy Van Kirk; Christopher B. Cooper; James C. Sutton; Zhengping Ma; Rajasree Golla; Ramakrishna Seethala; Mary Ellen K. Salyan; Akbar Nayeem; Stanley R. Krystek; Steven Sheriff; Daniel M. Camac; Paul E. Morin; Brian Carpenter; Jeffrey A. Robl; Robert Zahler; David A. Gordon; Lawrence G. Hamann

Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored. On the distal aryl group, a number of substitutions are well tolerated. A crystal structure was obtained for a complex between 11beta-HSD1 and the most potent inhibitor in this series.


Journal of Medicinal Chemistry | 2009

N-Aryl-oxazolidin-2-imine Muscle Selective Androgen Receptor Modulators Enhance Potency through Pharmacophore Reorientation

Alexandra A. Nirschl; Yan Zou; Stanley R. Krystek; James C. Sutton; Ligaya M. Simpkins; John A. Lupisella; Joyce E. Kuhns; Ramakrishna Seethala; Rajasree Golla; Paul G. Sleph; Blake C. Beehler; Gary J. Grover; Donald Egan; Aberra Fura; Viral Vyas; Yi-Xin Li; John S. Sack; Kevin Kish; Yongmi An; James A. Bryson; Jack Z. Gougoutas; John D. Dimarco; Robert Zahler; Jacek Ostrowski; Lawrence G. Hamann

A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.


Journal of Medicinal Chemistry | 2017

Structure-Guided Design of EED Binders Allosterically Inhibiting the Epigenetic Polycomb Repressive Complex 2 (PRC2) Methyltransferase

Andreas Lingel; Martin Sendzik; Ying Huang; Michael Shultz; John Cantwell; Michael Patrick Dillon; Xingnian Fu; John Fuller; Tobias Gabriel; Justin Gu; Xiangqing Jiang; Ling Li; Fang Liang; Maureen Mckenna; Wei Qi; Weijun Rao; Xijun Sheng; Wei Shu; James C. Sutton; Benjamin Taft; Long Wang; Jue Zeng; Hailong Zhang; Maya Zhang; Kehao Zhao; Mika Lindvall; Dirksen E. Bussiere

PRC2 is a multisubunit methyltransferase involved in epigenetic regulation of early embryonic development and cell growth. The catalytic subunit EZH2 methylates primarily lysine 27 of histone H3, leading to chromatin compaction and repression of tumor suppressor genes. Inhibiting this activity by small molecules targeting EZH2 was shown to result in antitumor efficacy. Here, we describe the optimization of a chemical series representing a new class of PRC2 inhibitors which acts allosterically via the trimethyllysine pocket of the noncatalytic EED subunit. Deconstruction of a larger and complex screening hit to a simple fragment-sized molecule followed by structure-guided regrowth and careful property modulation were employed to yield compounds which achieve submicromolar inhibition in functional assays and cellular activity. The resulting molecules can serve as a simplified entry point for lead optimization and can be utilized to study this new mechanism of PRC2 inhibition and the associated biology in detail.


Bioorganic & Medicinal Chemistry Letters | 2013

2-Aminothiazole based P2Y1 antagonists as novel antiplatelet agents

Zulan Pi; James C. Sutton; John Lloyd; Ji Hua; Laura A. Price; Qimin Wu; Ming Chang; Joanna Zheng; Robert Rehfuss; Christine Huang; Ruth R. Wexler; Patrick Y.S. Lam

ADP receptors, P2Y1 and P2Y12 have been recognized as potential targets for antithrombotic drugs. A series of P2Y1 antagonists that contain 2-aminothiazoles as urea surrogates were discovered. Extensive SAR of the thiazole ring is described. The most potent compound 7j showed good P2Y1 binding (Ki=12nM), moderate antagonism of platelet aggregation (PA IC50=5.2μM) and acceptable PK in rats.


ACS Medicinal Chemistry Letters | 2017

Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor

Young Shin Cho; Julian Levell; Gang Liu; Thomas Caferro; James C. Sutton; Cynthia Shafer; Abran Costales; James R. Manning; Qian Zhao; Martin Sendzik; Michael Shultz; Gregg Chenail; Julia Dooley; Brian Villalba; Ali Farsidjani; Jinyun Chen; Raviraj Kulathila; Xiaoling Xie; Stephanie Dodd; Ty Gould; Guiqing Liang; Tycho Heimbach; Kelly Slocum; Brant Firestone; Minying Pu; Raymond Pagliarini; Joseph D. Growney

Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg132. Having identified an allosteric, induced pocket of IDH1R132H, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for in vivo modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate IDH305 (13), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents. Preclinical characterization of this compound exhibited in vivo correlation of 2-HG reduction and efficacy in a patient-derived IDH1 mutant xenograft tumor model. IDH305 (13) has progressed into human clinical trials for the treatment of cancers with IDH1 mutation.


Bioorganic & Medicinal Chemistry Letters | 2009

Solid-phase synthesis of a library based on biphenyl-containing trypsin-like serine protease inhibitors

Shuhao Shi; Shirong Zhu; Samuel W. Gerritz; Bogumila Rachwal; Zheming Ruan; Robert Hutchins; Ramesh Kakarla; Michael J. Sofia; James C. Sutton; Daniel L. Cheney

The solid-phase synthesis of a library based on an unusual biphenyl-containing trypsin-like serine protease inhibitor is described. Key to this effort was the synthesis of a highly functionalized aryl boronic acid reagent which required the development of a novel and efficient method to convert a triflate to a pinacolboronate in large scale.


Archive | 2005

Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods

Lawrence G. Hamann; Ashish Khanna; Mark S. Kirby; David R. Magnin; Ligaya M. Simpkins; James C. Sutton; Jeffrey A. Robl


Archive | 2003

Bicyclic modulators of androgen receptor function

Chongqing Sun; Lawrence G. Hamann; David J. Augeri; Yingzhi Bi; Jeffrey A. Robl; Yanting Huang; Tammy C. Wang; Alexandra Holubec; Ligaya M. Simpkins; James C. Sutton; James J. Li

Collaboration


Dive into the James C. Sutton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge