James Cavazzoni
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James Cavazzoni.
Journal of Horticultural Science & Biotechnology | 2006
David H. Fleisher; Logan S. Logendra; Catalin Moraru; A.J. Both; James Cavazzoni; Thomas J. Gianfagna; Tung-Ching Lee; Harry W. Janes
Summary Controlled environment experiments were conducted to evaluate the effect of a 2-week change in air temperature imposed after first fruit-set on tomato production scheduling and on the quality of vine-ripened fruit. Experiments were conducted with hydroponically-grown tomato (Lycopersicon esculentum Mill., cv. ‘Laura’). Air temperature was altered from control day/night temperature values of 23°/18°C for a 2-week period starting 10 d after fruit-set. Plants were returned to the 23°/18°C temperature and a minimum of eight fruits per treatment were harvested at three ripening stages, breaker (when 25% of the fruit skin had acquired a red tint), breaker plus 3 d, and breaker plus 6 d. A perturbation of ± 5°C (28°/23°C and 18°/13°C) was used in two Experiments (E1 and E2) and ± 7°C (30°/25°C and 16°/11°C) was used in a third Experiment (E3). Fruits were more responsive to an increase than to a decrease in temperature. Reductions in days to harvest (from 3.1 – 8.5 d) and fruit fresh weight at later stages of vine-ripening were observed for the high temperature treatments. Colour indices, soluble solids contents (SSC), acidity and viscosity at each ripening stage were significantly affected by high temperature treatments. The results indicate that short-term temperature perturbations following first fruit-set can influence the rates at which changes occurred in the external appearance of fruit (colour) and in their internal characteristics. The results can be used to improve environmental control and management strategies for tomato growers.
Energy Policy | 1996
James Cavazzoni; Tyler Volk
A full assessment of the impacts of land clearance and crop production on atmospheric CO2 requires a systems approach. By considering long-term soil carbon changes and fossil fuel energy inputs, we show that increased crop productivity will alleviate CO2 release to the atmosphere primarily by preventing additional land cultivation. Each hectare of cropland undergoing a simulated threefold crop productivity increase here prevents a net release on the order of 150-200 Mg C to the atmosphere over 100 years by avoiding additional land cultivation which would otherwise be required. This effective carbon sink would slowly diminish with time due to fossil fuel energy input requirements. However, future self-containment of the energy needs of high-yield crop production may displace on the order of 1.0 Pg C per year of fossil fuel carbon, in addition to the carbon sink attributable to avoided land cultivation. By avoiding land cultivation, high yield crop systems also preserve natural ecosystems.
Transactions of the ASABE | 2003
David H. Fleisher; James Cavazzoni; Gene A. Giacomelli; K. C. Ting
The SUBSTOR crop growth model was adapted for controlled-environment hydroponic production of potato (Solanum tuberosum L. cv. Norland) under elevated atmospheric carbon dioxide concentration. Adaptations included adjustment of input files to account for cultural differences between the field and controlled environments, calibration of genetic coefficients, and adjustment of crop parameters including radiation use efficiency. Source code modifications were also performed to account for the absorption of light reflected from the surface below the crop canopy, an increased leaf senescence rate, a carbon (mass) balance to the model, and to modify the response of crop growth rate to elevated atmospheric carbon dioxide concentration. Adaptations were primarily based on growth and phenological data obtained from growth chamber experiments at Rutgers University (New Brunswick, N.J.) and from the modeling literature. Modified-SUBSTOR predictions were compared with data from Kennedy Space Centers Biomass Production Chamber for verification. Results show that, with further development, modified-SUBSTOR will be a useful tool for analysis and optimization of potato growth in controlled environments.
2003, Las Vegas, NV July 27-30, 2003 | 2003
David H. Fleisher; A.J. Both; Catalin Moraru; Logan S. Logendra; Tom Gianfagna; Tung-Ching Lee; Harry W. Janes; James Cavazzoni
Quality factors such as size, color, taste, and nutritional content are important criteria for marketing of greenhouse tomato fruit. While the majority of the research on fruit quality factors focuses on effects of post-harvesting and storage conditions, the environmental conditions during plant growth and the time for which the fruit is allowed to ripen on the vine also influence fruit quality. Growth chamber experiments were performed with tomato (cv. Laura) aiming to study the influence of air temperature perturbations during fruit set on fruit quality at maturity, the time to harvest, and the harvest window. Plants were grown in 6” pots and pruned to the 2nd true leaf above the first fruit cluster. Nutrients were provided through a drip irrigation system. All plants were grown under the same environmental conditions except for a two week period beginning 10 days after fruit-set during which plants were assigned to one of three day/night temperature treatments, 28/23°C, 23/18°C, and 18/13°C. Five tomato fruits were harvested from each plant at three distinct physiological ages; breaker stage (taken as the point at which 25% of the fruit begins to turn red), breaker stage plus three days, and breaker stage plus six days. Harvested fruits were analyzed for mass, size, color, soluble solids content, pH, acidity, viscosity, and other quality parameters. Initial results show significant temperature effects on fruit size, mass, developmental rate, and fruit processing characteristics. The results are applicable towards the development of more efficient plant production strategies for greenhouse growers and for NASA’s advanced life support research program.
international conference on evolvable systems | 2000
Harry Jones; James Cavazzoni
Life support & biosphere science : international journal of earth space | 1999
James Cavazzoni; Tyler Volk; Bruce Bugbee; Dougher T
international conference on evolvable systems | 2002
Harry Jones; James Cavazzoni; Paul Keas
Acta Horticulturae | 2002
James Cavazzoni; Tyler Volk; Francesco N. Tubiello; Oscar Monje
2000 ASAE Annual International Meeting, Technical Papers: Engineering Solutions for a New Century | 2000
David H. Fleisher; James Cavazzoni; Gene A. Giacomelli; K. C. Ting
Life support & biosphere science : international journal of earth space | 1997
James Cavazzoni; Tyler Volk; Stutte G