Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Jontes is active.

Publication


Featured researches published by James D. Jontes.


Human Molecular Genetics | 2013

Temporal requirement for SMN in motoneuron development.

Le T. Hao; Phan Q. Duy; James D. Jontes; Marc A. Wolman; Michael Granato; Christine E. Beattie

Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a comprehensive analysis of motoneuron development in vivo under conditions of low SMN will give insight into why the motor unit becomes dysfunctional. We have generated genetic mutants in zebrafish expressing low levels of SMN from the earliest stages of development. Analysis of motoneurons in these mutants revealed motor axons were often shorter and had fewer branches. We also found that motoneurons had significantly fewer dendritic branches and those present were shorter. Analysis of motor axon filopodial dynamics in live embryos revealed that mutants had fewer filopodia and their average half-life was shorter. To determine when SMN was needed to rescue motoneuron development, SMN was conditionally induced in smn mutants during embryonic stages. Only when SMN was added back soon after motoneurons were born, could later motor axon development be rescued. Importantly, analysis of motor behavior revealed that animals with motor axon defects had significant deficits in motor output. We also show that SMN is required earlier for motoneuron development than for survival. These data support that SMN is needed early in development of motoneuron dendrites and axons to develop normally and that this is essential for proper connectivity and movement.


Frontiers in Molecular Neuroscience | 2013

Protocadherins, not prototypical: a complex tale of their interactions, expression, and functions

Joshua A. Weiner; James D. Jontes

The organization of functional neural circuits requires the precise and coordinated control of cell–cell interactions at nearly all stages of development, including neuronal differentiation, neuronal migration, axon outgrowth, dendrite arborization, and synapse formation and stabilization. This coordination is brought about by the concerted action of a large number of cell surface receptors, whose dynamic regulation enables neurons (and astrocytes) to adopt their proper roles within developing neural circuits. The protocadherins (Pcdhs) comprise a major family of cell surface receptors expressed in the developing vertebrate nervous system whose cellular and developmental roles are only beginning to be elucidated. In this review, we highlight selected recent results in several key areas of Pcdh biology and discuss their implications for our understanding of neural circuit formation and function.


Trends in Neurosciences | 2006

Selective stabilization and synaptic specificity: a new cell-biological model

James D. Jontes; Greg R. Phillips

How are appropriate connections between neurons sorted from the overwhelming surplus of potential, yet inappropriate, connections? Despite the apparently improbable nature of the process, brains wire themselves with a high degree of reproducibility that has been conserved across evolutionary history. Here, we outline a viable cell-biological model for generating synaptic specificity that features selection of nascent synapses based on adhesion and recognition. This process uses the highly dynamic and stochastic nature of intracellular trafficking to generate reproducible patterns of synaptic connectivity.


Developmental Biology | 2009

Protocadherin-19 is essential for early steps in brain morphogenesis

Michelle R. Emond; Sayantanee Biswas; James D. Jontes

One of the earliest stages of brain morphogenesis is the establishment of the neural tube during neurulation. While some of the cellular mechanisms responsible for neurulation have been described in a number of vertebrate species, the underlying molecular processes are not fully understood. We have identified the zebrafish homolog of protocadherin-19, a member of the cadherin superfamily, which is expressed in the anterior neural plate and is required for brain morphogenesis. Interference with Protocadherin-19 function with antisense morpholino oligonucleotides leads to a severe disruption in early brain morphogenesis. Despite these pronounced effects on neurulation, axial patterning of the neural tube appears normal, as assessed by in situ hybridization for otx2, pax2.1 and krox20. Characterization of embryos early in development by in vivo 2-photon timelapse microscopy reveals that the observed disruption of morphogenesis results from an arrest of cell convergence in the anterior neural plate. These results provide the first functional data for protocadherin-19, demonstrating an essential role in early brain development.


Developmental Biology | 2008

Inhibition of protocadherin-α function results in neuronal death in the developing zebrafish

Michelle R. Emond; James D. Jontes

The pcdhalpha/CNR gene comprises a diverse array of neuronal cell-surface proteins of the cadherin superfamily, although very little is known about their role in neural development. Here we provide the first in-depth characterization of pcdh1alpha in zebrafish. Whole-mount immunocytochemistry demonstrates that a large proportion of endogenous cytoplasmic domain immunoreactivity is present in the nucleus, suggesting that endoproteolytic cleavage and nuclear translocation of the intracellular domain are important aspects of pcdh1alpha activity in vivo. Using whole-mount immunocytochemistry and BAC-based expression of Pcdh1alpha-GFP fusion proteins, we find that Pcdh1alpha does not appear to form stable, synaptic puncta at early stages of synaptogenesis. We also demonstrate that the presence of the Pcdh1alpha cytoplasmic domain is essential for normal function. Truncation of Pcdh1alpha proteins, using splice-blocking antisense morpholinos to prevent the addition of the common intracellular domain to the entire pcdh1alpha cluster, results in neuronal apoptosis throughout the developing brain and spinal cord, demonstrating an essential role for pcdh1alpha in early neural development. This cell death phenotype can be attenuated by the expression of a soluble Pcdh1alpha cytoplasmic domain.


Molecular Biology of the Cell | 2014

Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish

Sayantanee Biswas; Michelle R. Emond; Phan Q. Duy; Le T. Hao; Christine E. Beattie; James D. Jontes

Interference with Pcdh18b function results in impaired arborization of motor axons in the developing zebrafish. Pcdh18b interacts with Nap1, a regulator of actin assembly. Time-lapse imaging indicates that both Pcdh18b and Nap1 may affect axon arborization by regulating the density of axonal filopodia.


Human Molecular Genetics | 2015

Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy

Le Thi Hao; Phan Q. Duy; James D. Jontes; Christine E. Beattie

Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.


Journal of Cell Biology | 2015

Protocadherins Control the Modular Assembly of Neuronal Columns in the Zebrafish Optic Tectum

Sharon Cooper; Michelle R. Emond; Phan Q. Duy; Brandon G. Liebau; Marc A. Wolman; James D. Jontes

δ-Protocadherins partition the zebrafish optic tectum into radial columns of neurons, and the neurons within a column are siblings derived from common neuronal progenitors.


Neuroscience | 2011

Differential expression, alternative splicing, and adhesive properties of the zebrafish δ1-protocadherins

C.J. Blevins; Michelle R. Emond; Sayantanee Biswas; James D. Jontes

Protocadherins comprise the largest family within the cadherin superfamily of cell surface receptors. Here, we characterize the δ1-protocadherin subfamily during the development of the zebrafish nervous system. In zebrafish, there are five δ1-protocadherins: pcdh1a, pcdh1b, pcdh7a, pcdh7b, andpcdh9. Each protocadherin gene is highly homologous to its human ortholog. While the expression pattern in the developing CNS is similar for each δ1-protocadherin, with labeling observed in all major subdivisions, the detailed patterns are distinct. In addition, we provide evidence for alternative splicing of the pcdh7b and pcdh9 genes, resulting in variation in their respective cytoplasmic domains. As protocadherins are widely regarded to act as cell adhesion molecules, we used in vitro assays of δ1-pcdh ectodomains to directly test their adhesive properties. We found no evidence for calcium-dependent, homophilic adhesion, contrasting sharply with the behavior of classical cadherins.


eLife | 2016

Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy

Sharon Cooper; James D. Jontes; Marcos Sotomayor

Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of missense mutations are understood. Here we present a crystallographic structure of the minimal adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals the adhesive interface for Pcdh19, which is broadly relevant to both non-clustered δ and clustered protocadherin subfamilies. In addition, we show that several PCDH19-FE missense mutations localize to the adhesive interface and abolish Pcdh19 adhesion in in vitro assays, thus revealing the biochemical basis of their pathogenic effects during brain development. DOI: http://dx.doi.org/10.7554/eLife.18529.001

Collaboration


Dive into the James D. Jontes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc A. Wolman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Le T. Hao

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge