Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Joseph is active.

Publication


Featured researches published by James D. Joseph.


Molecular Cell | 2009

The Homeodomain Protein HOXB13 Regulates the Cellular Response to Androgens

John D. Norris; Ching-Yi Chang; Bryan M. Wittmann; Rebecca S. Kunder; Huaxia Cui; Daju Fan; James D. Joseph; Donald P. McDonnell

HOXB13 is a member of the homeodomain family of sequence-specific transcription factors and, together with the androgen receptor (AR), plays a critical role in the normal development of the prostate gland. We demonstrate here that, in prostate cancer cells, HOXB13 is a key determinant of the response to androgens. Specifically, it was determined that HOXB13 interacts with the DNA-binding domain of AR and inhibits the transcription of genes that contain an androgen-response element (ARE). In contrast, the AR:HOXB13 complex confers androgen responsiveness to promoters that contain a specific HOXB13-response element. Further, HOXB13 and AR synergize to enhance the transcription of genes that contain a HOX element juxtaposed to an ARE. The profound effects of HOXB13 knockdown on androgen-regulated proliferation, migration, and lipogenesis in prostate cancer cells highlight the importance of the observed changes in gene expression.


Cancer Research | 2010

WNT11 expression is induced by ERRα and β-catenin and acts in an autocrine manner to increase cancer cell migration

Mary A. Dwyer; James D. Joseph; Hilary E. Wade; Matthew L. Eaton; Rebecca S. Kunder; Dmitri Kazmin; Ching-Yi Chang; Donald P. McDonnell

Elevated expression of the orphan nuclear receptor estrogen-related receptor α (ERRα) has been associated with a negative outcome in several cancers, although the mechanism(s) by which this receptor influences the pathophysiology of this disease and how its activity is regulated remain unknown. Using a chemical biology approach, it was determined that compounds, previously shown to inhibit canonical Wnt signaling, also inhibited the transcriptional activity of ERRα. The significance of this association was revealed in a series of biochemical and genetic experiments that show that (a) ERRα, β-catenin (β-cat), and lymphoid enhancer-binding factor-1 form macromolecular complexes in cells, (b) ERRα transcriptional activity is enhanced by β-cat expression and vice versa, and (c) there is a high level of overlap among genes previously shown to be regulated by ERRα or β-cat. Furthermore, silencing of ERRα and β-cat expression individually or together dramatically reduced the migratory capacity of breast, prostate, and colon cancer cells in vitro. This increased migration could be attributed to the ERRα/β-cat-dependent induction of WNT11. Specifically, using (a) conditioned medium from cells overexpressing recombinant WNT11 or (b) WNT11 neutralizing antibodies, we were able to show that this protein was the key mediator of the promigratory activities of ERRα/β-cat. Together, these data provide evidence for an autocrine regulatory loop involving transcriptional upregulation of WNT11 by ERRα and β-cat that influences the migratory capacity of cancer cells.


Journal of Medicinal Chemistry | 2015

Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts

Andiliy G. Lai; Mehmet Kahraman; Steven P. Govek; Johnny Y. Nagasawa; Celine Bonnefous; Jackie Julien; Karensa Douglas; John Sensintaffar; Nhin Lu; Kyoung-Jin Lee; Anna Aparicio; Josh Kaufman; Jing Qian; Gang Shao; Rene Prudente; Michael J. Moon; James D. Joseph; Beatrice Darimont; Daniel Brigham; Kate Grillot; Richard A. Heyman; Peter Rix; Jeffrey H. Hager; Nicholas D. Smith

Approximately 80% of breast cancers are estrogen receptor alpha (ER-α) positive, and although women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, resistance often emerges. Although a variety of resistance mechanism may be at play in this state, there is evidence that in many cases the ER still plays a central role, including mutations in the ER leading to constitutively active receptor. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and is active in patients who have progressed on antihormonal agents. However, fulvestrant suffers from poor pharmaceutical properties and must be administered by intramuscular injections that limit the total amount of drug that can be administered and hence lead to the potential for incomplete receptor blockade. We describe the identification and characterization of a series of small-molecule, orally bioavailable SERDs which are potent antagonists and degraders of ER-α and in which the ER-α degrading properties were prospectively optimized. The lead compound 11l (GDC-0810 or ARN-810) demonstrates robust activity in models of tamoxifen-sensitive and tamoxifen-resistant breast cancer, and is currently in clinical trials in women with locally advanced or metastatic estrogen receptor-positive breast cancer.


Molecular Endocrinology | 2009

Induction of Krüppel-Like Factor 5 Expression by Androgens Results in Increased CXCR4-Dependent Migration of Prostate Cancer Cells in Vitro

Daniel E. Frigo; Andrea B. Sherk; Bryan M. Wittmann; John D. Norris; Qianben Wang; James D. Joseph; Aidan P. Toner; Myles Brown; Donald P. McDonnell

Advanced prostate cancers preferentially metastasize to bone, suggesting that this tissue produces factors that provide a suitable microenvironment for prostate cancer cells. Recently, it has become clear that even in antiandrogen-resistant cancers, the androgen receptor (AR)-signaling axis is required for prostate cancer progression. Therefore, we hypothesized that AR may be involved in the regulation of pathways that are responsible for the homing of prostate cancer cells to select microenvironments. In support of this hypothesis, we have determined that chemokine (C-X-C motif) receptor 4 (CXCR4), the receptor for the chemokine CXCL12, is up-regulated in prostate cancer cells in response to androgens. Given that the levels of CXCL12 are elevated at sites of known prostate cancer metastases such as bone, these results suggest that androgens may influence prostate cancer metastasis. Specifically, we demonstrate that androgens increase the levels of both CXCR4 mRNA and functional protein in LNCaP prostate cancer cells. Importantly, androgens enhanced the migration of LNCaP cells toward a CXCL12 gradient, an effect that could be blocked by the specific CXCR4 antagonist AMD3100. Interestingly, CXCR4 is not directly regulated by androgens but rather is positively up-regulated by Krüppel-like factor 5 (KLF5), a transcription factor that we have shown to be an early, direct target of AR. Further, KLF5 is both required and sufficient for androgen-mediated CXCR4 expression and migration toward CXCL12. Taken together, these findings demonstrate that AR can utilize the CXCL12/CXCR4 axis through induction of KLF5 expression to promote prostate cancer progression and highlight the potential utility of CXCR4 antagonists as prostate cancer therapeutics.


Journal of Biological Chemistry | 2010

An Interdomain Interaction of the Androgen Receptor Is Required for Its Aggregation and Toxicity in Spinal and Bulbar Muscular Atrophy

Christopher R. Orr; Heather L. Montie; Yuhong Liu; Elena Bolzoni; Shannon C. Jenkins; Elizabeth M. Wilson; James D. Joseph; Donald P. McDonnell; Diane E. Merry

Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function.


Chemistry & Biology | 2009

Differential Presentation of Protein Interaction Surfaces on the Androgen Receptor Defines the Pharmacological Actions of Bound Ligands

John D. Norris; James D. Joseph; Andrea B. Sherk; Dalia Juzumiene; Philip Turnbull; Stephen William Rafferty; Huaxia Cui; Erin Anderson; Daju Fan; Delita Arnelle Dye; Xiang Deng; Dmitri Kazmin; Ching-Yi Chang; Timothy M. Willson; Donald P. McDonnell

The pharmacological activity of different nuclear receptor ligands is reflected by their impact on receptor structure. Thus, we asked whether differential presentation of protein-protein interaction surfaces on the androgen receptor (AR), a surrogate assay of receptor conformation, could be used in a prospective manner to define the pharmacological activity of bound ligands. To this end, we identified over 150 proteins/polypeptides whose ability to interact with AR is influenced in a differential manner by ligand binding. The most discriminatory of these protein-AR interactions were used to develop a robust compound-profiling tool that enabled the separation of ligands into functionally distinguishable classes. Importantly, the ligands within each class exhibited similar pharmacological activities, a result that highlights the relationship between receptor structure and activity and provides direction for the discovery of novel AR modulators.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists

James D. Joseph; Bryan M. Wittmann; Mary A. Dwyer; Huaxia Cui; Delita Arnelle Dye; Donald P. McDonnell; John D. Norris

The impact of ligand binding on nuclear receptor (NR) structure and the ability of target cells to distinguish between different receptor-ligand complexes are key determinants of the pharmacological activity of NR ligands. However, until relatively recently, these mechanistic insights have not been used in a prospective manner to develop screens for NR modulators with specific therapeutic activities. Driven by the need for unique androgen receptor (AR) antagonists that retain activity in hormone-refractory prostate cancer, we developed and applied a conformation-based screen to identify AR antagonists that were mechanistically distinct from existing drugs of this class. Two molecules were identified by using this approach, D36 and D80, which interact with AR in a unique manner and allosterically inhibit AR agonist activity. Unlike the clinically important antiandrogens, casodex and hydroxyflutamide, both D36 and D80 block androgen action in cellular models of hormone-refractory prostate cancer. Mechanistically, these compounds further distinguish themselves from classical AR antagonists in that they do not promote AR nuclear translocation and quantitatively inhibit the association of AR with DNA even under conditions of overexpression. Although the therapeutic potential of these antiandrogens is apparent, it is the demonstration that it is possible, to modulate the interaction of cofactors with agonist-activated AR, using second-site modulators, that has the greatest potential with respect to the therapeutic exploitation of AR and other NRs.


Eukaryotic Cell | 2002

Calcium Binding Is Required for Calmodulin Function in Aspergillus nidulans

James D. Joseph; Anthony R. Means

ABSTRACT To explore the structural basis for the essential role of calmodulin (CaM) in Aspergillus nidulans, we have compared the biochemical and in vivo properties of A. nidulans CaM (AnCaM) with those of heterologous CaMs. Neither Saccharomyces cerevisiae CaM (ScCaM) nor a Ca2+ binding mutant of A. nidulans CaM (1234) interacts appreciably with A. nidulans CaM binding proteins by an overlay assay or activates two essential CaMKs, CMKA and CMKB. In contrast, although vertebrate CaM (VCaM) binds a spectrum of proteins similar to that for AnCaM, it is unable to fully activate CMKA and CMKB, displaying a higher KCaM and reduced Vmax for both enzymes. In correlation with the biochemical analysis, neither ScCaM nor 1234 can support A. nidulans growth in the absence of the endogenous protein, whereas VCaM only partially complements the absence of wild-type CaM. Analysis of VCaM and AnCaM chimeras demonstrates that amino acid variations in both N- and C-terminal domains contribute to the inability of VCaM to activate CMKB, but differences in the N terminus are largely responsible for the reduced activity towards CMKA. In vivo, the chimeric molecules support growth equivalently, but only to levels intermediate between those of VCaM and AnCaM, suggesting that the reduced ability to activate the CaMKs is not solely responsible for the inability of VCaM to complement the absence of the wild-type protein. Thus, not only is Ca2+ binding required for CaM function in A. nidulans, but the essential in vivo functions of A. nidulans CaM are uniquely sensitive to the subtle amino acid variations present in vertebrate CaM.


Bioorganic & Medicinal Chemistry Letters | 2015

Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft

Steven P. Govek; Johnny Y. Nagasawa; Karensa Douglas; Andiliy G. Lai; Mehmet Kahraman; Celine Bonnefous; Anna Aparicio; Beatrice Darimont; Katherine Grillot; James D. Joseph; Joshua Kaufman; Kyoung-Jin Lee; Nhin Lu; Michael J. Moon; Rene Prudente; John Sensintaffar; Peter Rix; Jeffrey H. Hager; Nicholas D. Smith

Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.


Cancer Research | 2014

Abstract 4757: A novel class of selective estrogen receptors degraders regresses tumors in pre-clinical models of endocrine-resistant breast cancer

James D. Joseph; Beatrice Darimont; Steven P. Govek; Dan Brigham; Jing Qian; John Sensintaffar; Gang Shao; Anna Aparicio; Mehmet Kahraman; Andiliy G. Lai; Kyoung-Jin Lee; Nhin Lu; Johnny Nagasawa; Michael Moon; Peter Rix; Nicholas Smith; Jeff Hager

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA 80% of all breast cancers express the estrogen receptor alpha (ERα) and thus are treated with anti-hormonal therapies that directly block ER function (e.g.Tamoxifen) or hormone synthesis (Aromatase Inhibitors). While these therapies are initially effective, acquired resistance invariably emerges and disease progression ensues. Importantly, the majority of these tumors continue to depend on ERα for growth and survival via both ligand-dependent and ligand-independent pathways. The emerging evidence that ERα can be activated in the absence of estrogens via point mutations in ERα or cellular signaling pathways supports the development of agents that are not only competitive ERα antagonists but also reduce steady state levels of the receptor and thus limit both ligand dependent and independent signaling. We have identified two novel series of non-steroidal ERα antagonists, series I exemplified by ARN-810, now in clinical trials for treatment of endocrine resistant breast cancer, and series II, both of which induce degradation of ERα at picomolar concentrations resulting in significant reduction in steady state ERα protein levels in breast cancer cell lines. Using peptide-based conformational profiling, we show that both series induce ERα conformations that are distinct from both fulvestrant and tamoxifen indicating novel mechanism of action. In vitro, both ligand series are active on wild-type and the constitutively active ERα mutants found in endocrine resistant breast cancer patients. Importantly, these compounds yield tumor regression in both tamoxifen-sensitive and -resistant models of breast cancer in vivo. Based on their unique in vitro profile, and good pharmacokinetics following oral dosing, these compounds represent a novel class of Selective Estrogen Receptor Degraders (SERDs) that hold promise as a next generation therapy for the treatment of ER+ breast cancer as monotherapy, as well as in combination with agents that target other pathways involved in both intrinsic and acquired endocrine resistance. Citation Format: James D. Joseph, Beatrice Darimont, Steven Govek, Dan Brigham, Jing Qian, John Sensintaffar, Gang Shao, Anna Aparicio, Mehmet Kahraman, Andiliy Lai, Kyoung-Jin Lee, Nhin Lu, Johnny Nagasawa, Michael Moon, Peter Rix, Nick Smith, Jeff Hager. A novel class of selective estrogen receptors degraders regresses tumors in pre-clinical models of endocrine-resistant breast cancer. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4757. doi:10.1158/1538-7445.AM2014-4757

Collaboration


Dive into the James D. Joseph's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald P. McDonnell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jing Qian

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice Darimont

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nhin Lu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Peter Rix

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge