Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Quirk is active.

Publication


Featured researches published by James D. Quirk.


Magnetic Resonance in Medicine | 2003

Equilibrium Water Exchange Between the Intra- and Extracellular Spaces of Mammalian Brain

James D. Quirk; G. Larry Bretthorst; Timothy Q. Duong; Avi Z. Snyder; Charles S. Springer; Joseph J. H. Ackerman; Jeffrey J. Neil

This report describes the measurement of water preexchange lifetimes and intra/extracellular content in intact, functioning mammalian brain. Intra‐ and extracellular water magnetic resonance (MR) signals from rat brain in vivo were quantitatively resolved in the longitudinal relaxation domain following administration of an MR relaxation agent into the extracellular space. The estimated intracellular water content fraction was 81% ± 8%, and the intra‐ to extracellular exchange rate constant was 1.81 ± 0.89 s–1 (mean ± SD, N = 9), corresponding to an intracellular water preexchange lifetime of ∼550 ms. These results provide a temporal framework for anticipating the water exchange regime (fast, intermediate, or slow) underlying a variety of compartment‐sensitive measurements. The method also supplies a means by which to evaluate membrane water permeability and intra/extracellular water content serially in intact tissue. The data are obtained in an imaging mode that permits detection of regional variations in these parameters. Magn Reson Med 50:493–499, 2003.


Journal of Applied Physiology | 2009

Quantification of lung microstructure with hyperpolarized 3He diffusion MRI

Dmitriy A. Yablonskiy; Alexander L. Sukstanskii; Jason C. Woods; David S. Gierada; James D. Quirk; James C. Hogg; Joel D. Cooper; Mark S. Conradi

The structure and integrity of pulmonary acinar airways and their changes in different diseases are of great importance and interest to a broad range of physiologists and clinicians. The introduction of hyperpolarized gases has opened a door to in vivo studies of lungs with MRI. In this study we demonstrate that MRI-based measurements of hyperpolarized (3)He diffusivity in human lungs yield quantitative information on the value and spatial distribution of lung parenchyma surface-to-volume ratio, number of alveoli per unit lung volume, mean linear intercept, and acinar airway radii-parameters that have been used by lung physiologists for decades and are accepted as gold standards for quantifying emphysema. We validated our MRI-based method in six human lung specimens with different levels of emphysema against direct unbiased stereological measurements. We demonstrate for the first time MRI images of these lung microgeometric parameters in healthy lungs and lungs with different levels of emphysema (mild, moderate, and severe). Our data suggest that decreases in lung surface area per volume at the initial stages of emphysema are due to dramatic decreases in the depth of the alveolar sleeves covering the alveolar ducts and sacs, implying dramatic decreases in the lungs gas exchange capacity. Our novel methods are sufficiently sensitive to allow early detection and diagnosis of emphysema, providing an opportunity to improve patient treatment outcomes, and have the potential to provide safe and noninvasive in vivo biomarkers for monitoring drug efficacy in clinical trials.


Radiology | 2008

Hyperpolarized 3He MR Imaging: Physiologic Monitoring Observations and Safety Considerations in 100 Consecutive Subjects

Barbara A. Lutey; Stephen S. Lefrak; Jason C. Woods; Tariq Tanoli; James D. Quirk; Adil Bashir; Dmitriy A. Yablonskiy; Mark S. Conradi; Seth T. Bartel; Thomas K. Pilgram; Joel D. Cooper; David S. Gierada

PURPOSE To evaluate the safety of hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging. MATERIALS AND METHODS Local institutional review board approval and informed consent were obtained. Physiologic monitoring data were obtained before, during, and after hyperpolarized (3)He MR imaging in 100 consecutive subjects (57 men, 43 women; mean age, 52 years +/- 14 [standard deviation]). The subjects inhaled 1-3 L of a gas mixture containing 300-500 mL (3)He and 0-2700 mL N(2) and held their breath for up to 15 seconds during MR imaging. Heart rate and rhythm and oxygen saturation of hemoglobin as measured by pulse oximetry (Spo(2)) were monitored continuously throughout each study. The effects of (3)He MR imaging on vital signs and Spo(2) and the relationship between pulmonary function, number of doses, and clinical classification (healthy volunteers, patients with asthma, heavy smokers, patients undergoing lung volume reduction surgery for severe emphysema, and patients with lung cancer) and the lowest observed Spo(2) were assessed. Any subjective symptoms were noted. RESULTS Except for a small postimaging decrease in mean heart rate (from 78 beats per minute +/- 13 to 73 beats per minute +/- 11, P < .001), there was no effect on vital signs. A mean transient decrease in Spo(2) of 4% +/- 3 was observed during the first minute after gas inhalation (P < .001) in 77 subjects who inhaled a dose of 1 L for 10 seconds or less, reaching a nadir of less than 90% at least once in 20 subjects and of less than 85% in four subjects. There was no correlation between the lowest Spo(2) and pulmonary function parameters other than baseline Spo(2) (r = 0.36, P = .001). The lowest mean Spo(2) varied by 1% between the first and second and second and third doses (P < .001) and was unrelated to clinical classification (P = .40). Minor subjective symptoms were noted by 10 subjects. No serious adverse events occurred. CONCLUSION Hyperpolarized (3)He MR imaging can be safely performed in healthy subjects, heavy smokers, and those with severe obstructive airflow limitation, although unpredictable transient desaturation suggests that potential subjects should be carefully screened for comorbidities.


Radiology | 2011

In Vivo Detection of Acinar Microstructural Changes in Early Emphysema with 3He Lung Morphometry

James D. Quirk; Barbara A. Lutey; David S. Gierada; Jason C. Woods; Robert M. Senior; Stephen S. Lefrak; Alexander L. Sukstanskii; Mark S. Conradi; Dmitriy A. Yablonskiy

PURPOSE To quantitatively characterize early emphysematous changes in the lung microstructure of current and former smokers with noninvasive helium 3 ((3)He) lung morphometry and to compare these results with the clinical standards, pulmonary function testing (PFT) and low-dose computed tomography (CT). MATERIALS AND METHODS This study was approved by the local institutional review board, and all subjects provided informed consent. Thirty current and former smokers, each with a minimum 30-pack-year smoking history and mild or no abnormalities at PFT, underwent (3)He lung morphometry. This technique is based on diffusion MR imaging with hyperpolarized (3)He gas and yields quantitative localized in vivo measurements of acinar airway geometric parameters, such as airway radii, alveolar depth, and number of alveoli per unit lung volume. These measurements enable calculation of standard morphometric characteristics, such as mean linear intercept and surface-to-volume ratio. RESULTS Noninvasive (3)He lung morphometry was used to detect alterations in acinar structure in smokers with normal PFT findings. When compared with smokers with the largest forced expiratory volume in 1 second (FEV(1)) to forced vital capacity (FVC) ratio, those with chronic obstructive pulmonary disease had significantly reduced alveolar depth (0.07 mm vs 0.13 mm) and enlarged acinar ducts (0.36 mm vs 0.3 mm). The mean alveolar geometry measurements in the healthiest subjects were in excellent quantitative agreement with literature values obtained by using invasive techniques (acinar duct radius, 0.3 mm; alveolar depth, 0.14 mm at 1 L above functional residual capacity). (3)He lung morphometry depicted greater abnormalities than did PFT and CT. No adverse events were associated with inhalation of (3)He gas. CONCLUSION (3)He lung morphometry yields valuable noninvasive insight into early emphysematous changes in alveolar geometry with increased sensitivity compared with conventional techniques.


Journal of Applied Physiology | 2012

Morphometric changes in the human pulmonary acinus during inflation

Adam James Hajari; Dmitriy A. Yablonskiy; Alexander L. Sukstanskii; James D. Quirk; Mark S. Conradi; Jason C. Woods

Despite decades of research into the mechanisms of lung inflation and deflation, there is little consensus about whether lung inflation occurs due to the recruitment of new alveoli or by changes in the size and/or shape of alveoli and alveolar ducts. In this study we use in vivo (3)He lung morphometry via MRI to measure the average alveolar depth and alveolar duct radius at three levels of inspiration in five healthy human subjects and calculate the average alveolar volume, surface area, and the total number of alveoli at each level of inflation. Our results indicate that during a 143 ± 18% increase in lung gas volume, the average alveolar depth decreases 21 ±5%, the average alveolar duct radius increases 7 ± 3%, and the total number of alveoli increases by 96 ± 9% (results are means ± SD between subjects; P < 0.001, P < 0.01, and P < 0.00001, respectively, via paired t-tests). Thus our results indicate that in healthy human subjects the lung inflates primarily by alveolar recruitment and, to a lesser extent, by anisotropic expansion of alveolar ducts.


Radiology | 2015

Regional Ventilation Changes in Severe Asthma after Bronchial Thermoplasty with 3He MR Imaging and CT

Robert P. Thomen; Ajay Sheshadri; James D. Quirk; Jim Kozlowski; Henry Ellison; Rhonda D. Szczesniak; Mario Castro; Jason C. Woods

PURPOSE To quantify regional lung ventilation in healthy volunteers and patients with severe asthma (both before and after thermoplasty) by using a combination of helium 3 ((3)He) magnetic resonance (MR) imaging and computed tomography (CT), with the intention of developing more effective image-guided treatments for obstructive lung diseases. MATERIALS AND METHODS With approval of the local institutional review board, informed consent, and an Investigational New Drug Exemption, six healthy volunteers and 10 patients with severe asthma were imaged in compliance with HIPAA regulations by using both multidetector CT and (3)He MR imaging. Individual bronchopulmonary segments were labeled voxel by voxel from the CT images and then registered to the (3)He MR images by using custom software. The (3)He signal intensity was then analyzed by evaluating the volume-weighted fraction of total-lung signal intensity present in each segment (segmental ventilation percentage [ SVP segmental ventilation percentage ]) and by identifying the whole-lung defect percentage and the segmental defect percentage. Of the 10 patients with asthma, seven received treatment with bronchial thermoplasty and were imaged with (3)He MR a second time. Changes in segmental defect percentages and whole-lung defect percentages are presented. RESULTS Ventilation measures for healthy volunteers yielded smaller segment-to-segment variation (mean SVP segmental ventilation percentage , 100% ± 18 [standard deviation]) than did the measures for patients with severe asthma (mean SVP segmental ventilation percentage , 97% ± 23). Patients with asthma also demonstrated larger segmental defect percentages (median, 13.5%; interquartile range, 8.9%-17.8%) than healthy volunteers (median, 6%; interquartile range, 5.6%-6.3%). These quantitative results confirm what is visually observed on the (3)He images. A Spearman correlation of r = -0.82 was found between the change in whole-lung defect percentage and the number of days between final treatment and second (3)He imaging. CONCLUSION Regional quantification of lung ventilation is indeed feasible and may be a useful technique for image-guided treatment of obstructive lung diseases, such as bronchial thermoplasty for severe asthma. In these patients, ventilation defects decreased as a function of time after treatment.


Journal of Applied Physiology | 2010

Quantitative assessment of lung microstructure in healthy mice using an MR-based 3He lung morphometry technique.

Emir Osmanagic; Alexander L. Sukstanskii; James D. Quirk; Jason C. Woods; Richard A. Pierce; Mark S. Conradi; Ewald R. Weibel; Dmitriy A. Yablonskiy

The recently developed technique of lung morphometry using hyperpolarized (3)He diffusion magnetic resonance (MR) (Yablonskiy DA, Sukstanskii AL, Woods JC, Gierada DS, Quirk JD, Hogg JC, Cooper JD, Conradi MS. J Appl Physiol 107: 1258-1265, 2009) permits in vivo study of lung microstructure at the alveolar level. Originally proposed for human lungs, it also has the potential to study small animals. The technique relies on theoretical developments in the area of gas diffusion in lungs linking the diffusion attenuated MR signal to the lung microstructure. To adapt this technique to small animals, certain modifications in MR protocol and data analysis are required, reflecting the smaller size of mouse alveoli and acinar airways. This is the subject of the present paper. Herein, we established empirical relationships relating diffusion measurements to geometrical parameters of lung acinar airways with dimensions typical for mice and rats by using simulations of diffusion in the airways. We have also adjusted the MR protocol to acquire data with much shorter diffusion times compared with humans to accommodate the substantially smaller acinar airway length. We apply this technique to study mouse lungs ex vivo. Our MR-based measurements yield mean values of lung surface-to-volume ratio of 670 cm(-1), alveolar density of 3,200 per mm(3), alveolar depth of 55 μm, and mean chord length of 62 μm, all consistent with published data obtained histologically in mice by unbiased methods. The proposed technique can be used for in vivo experiments, opening a door for longitudinal studies of lung morphometry in mice and other small animals.


Magnetic Resonance in Medicine | 2014

Quantification of human lung structure and physiology using hyperpolarized 129Xe

Yulin V. Chang; James D. Quirk; Iulian C. Ruset; Jeffrey J. Atkinson; F. William Hersman; Jason C. Woods

To present in vivo, human validation of a previously proposed method to measure key pulmonary parameters related to lung microstructure and physiology. Some parameters, such as blood–air barrier thickness, cannot be measured readily by any other noninvasive modality.


Magnetic Resonance in Medicine | 2014

Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results

Dmitriy A. Yablonskiy; Alexander L. Sukstanskii; James D. Quirk; Jason C. Woods; Mark S. Conradi

The introduction of hyperpolarized gases (3He and 129Xe) has opened the door to applications for which gaseous agents are uniquely suited—lung MRI. One of the pulmonary applications, diffusion MRI, relies on measuring Brownian motion of inhaled hyperpolarized gas atoms diffusing in lung airspaces. In this article we provide an overview of the theoretical ideas behind hyperpolarized gas diffusion MRI and the results obtained over the decade‐long research. We describe a simple technique based on measuring gas apparent diffusion coefficient (ADC) and an advanced technique, in vivo lung morphometry, that quantifies lung microstructure both in terms of Weibel parameters (acinar airways radii and alveolar depth) and standard metrics (mean linear intercept, surface‐to‐volume ratio, and alveolar density) that are widely used by lung researchers but were previously available only from invasive lung biopsy. This technique has the ability to provide unique three‐dimensional tomographic information on lung microstructure from a less than 15 s MRI scan with results that are in good agreement with direct histological measurements. These safe and sensitive diffusion measurements improve our understanding of lung structure and functioning in health and disease, providing a platform for monitoring the efficacy of therapeutic interventions in clinical trials. Magn Reson Med 71:486–505, 2014.


Radiology | 2014

Assessment of regional lung function with multivolume (1)H MR imaging in health and obstructive lung disease: comparison with (3)He MR imaging.

Francesca Pennati; James D. Quirk; Dmitriy A. Yablonskiy; Mario Castro; Andrea Aliverti; Jason C. Woods

PURPOSE To introduce a method based on multivolume proton (hydrogen [(1)H]) magnetic resonance (MR) imaging for the regional assessment of lung ventilatory function, investigating its use in healthy volunteers and patients with obstructive lung disease and comparing the outcome with the outcome of the research standard helium 3 ((3)He) MR imaging. MATERIALS AND METHODS The institutional review board approved the HIPAA-compliant protocol, and informed written consent was obtained from each subject. Twenty-six subjects, including healthy volunteers (n = 6) and patients with severe asthma (n = 11) and mild (n = 6) and severe (n = 3) emphysema, were imaged with a 1.5-T whole-body MR unit at four lung volumes (residual volume [ RV residual volume ], functional residual capacity [ FRC functional residual capacity ], 1 L above FRC functional residual capacity [ FRC+1 L 1 L above FRC ], total lung capacity [ TLC total lung capacity ]) with breath holds of 10-11 seconds, by using volumetric interpolated breath-hold examination. Each pair of volumes were registered, resulting in maps of (1)H signal change between the two lung volumes. (3)He MR imaging was performed at FRC+1 L 1 L above FRC by using a two-dimensional gradient-echo sequence. (1)H signal change and (3)He signal were measured and compared in corresponding regions of interest selected in ventral, intermediate, and dorsal areas. RESULTS In all volunteers and patients combined, proton signal difference between TLC total lung capacity and RV residual volume correlated positively with (3)He signal (correlation coefficient R(2) = 0.64, P < .001). Lower (P < .001) but positive correlation results from (1)H signal difference between FRC functional residual capacity and FRC+1 L 1 L above FRC (R(2) = 0.44, P < .001). In healthy volunteers, (1)H signal changes show a higher median and interquartile range compared with patients with obstructive disease and significant differences between nondependent and dependent regions. CONCLUSION Findings in this study demonstrate that multivolume (1)H MR imaging, without contrast material, can be used as a biomarker for regional ventilation, both in healthy volunteers and patients with obstructive lung disease.

Collaboration


Dive into the James D. Quirk's collaboration.

Top Co-Authors

Avatar

Dmitriy A. Yablonskiy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jason C. Woods

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander L. Sukstanskii

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David S. Gierada

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mario Castro

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Barbara A. Lutey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

G. Larry Bretthorst

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joel D. Cooper

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Stephen S. Lefrak

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge