Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Reid is active.

Publication


Featured researches published by James D. Reid.


Biochemical Journal | 2000

Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation

P E Jensen; James D. Reid; C. N. Hunter

The enzyme magnesium protoporphyrin chelatase catalyses the insertion of magnesium into protoporphyrin, the first committed step in chlorophyll biosynthesis. Magnesium chelatase from the cyanobacterium Synechocystis PCC6803 has been reconstituted in a highly active state as a result of purifying the constituent proteins from strains of Escherichia coli that overproduce the ChlH, ChlI and ChlD subunits. These individual subunits were analysed for their sensitivity to N-ethylmaleimide (NEM), in order to assess the roles that cysteine residues play in the partial reactions that comprise the catalytic cycle of Mg(2+) chelatase, such as the ATPase activity of ChlI, and the formation of ChlI-ChlD-MgATP and ChlH-protoporphyrin complexes. It was shown that NEM binds to ChlI and inhibits the ATPase activity of this subunit, and that prior incubation with MgATP affords protection against inhibition. Quantitative analysis of the effects of NEM binding on ChlI-catalysed ATPase activity showed that three out of four thiols per ChlI molecule are available to react with NEM, but only one cysteine residue per ChlI subunit is essential for ATPase activity. In contrast, the cysteines in ChlD are not essential for Mg(2+) chelatase activity, and the formation of the ChlI-ChlD-ATP complex can proceed with NEM-treated ChlI. Neither the ATPase activity of ChlI nor NEM-modifiable cysteines are therefore required to form the ChlI-ChlD-MgATP complex. However, this complex cannot catalyse magnesium chelation in the presence of the ChlH subunit, protoporphyrin and Mg(2+) ions. The simplest explanation for this is that in an intact Mg(2+) chelatase complex the ATPase activity of ChlI drives the chelation process. NEM binds to ChlH and inhibits the chelation reaction, and this effect can be partially alleviated by pre-incubating ChlH with magnesium and ATP. We conclude that cysteine residues play an important role in the chelation reaction, in respect of the ChlI-MgATP association, ATP hydrolysis and in the interaction of ChlH with MgATP and protoporphyrin IX.


Biochemical Journal | 2003

Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803

Mark Shepherd; James D. Reid; C. Neil Hunter

Magnesium protoporphyrin IX methyltransferase (ChlM), catalyses the methylation of magnesium protoporphyrin IX (MgP) at the C(6) propionate side chain to form magnesium protoporphyrin IX monomethylester (MgPME). Threading methods biased by sequence similarity and predicted secondary structure have been used to assign this enzyme to a particular class of S-adenosyl-L-methionine (SAM)-binding proteins. These searches suggest that ChlM contains a seven-stranded beta-sheet, common among small-molecule methyltransferases. Steady-state kinetic assays were performed using magnesium deuteroporphyrin IX (MgD), a more water-soluble substrate analogue of MgP. Initial rate studies showed that the reaction proceeds via a ternary complex. Product (S-adenosyl-L-homocysteine; SAH) inhibition was used to investigate the kinetic mechanism further. SAH was shown to exhibit competitive inhibition with respect to SAM, and mixed inhibition with respect to MgD. This is indicative of a random binding mechanism, whereby SAH may bind productively to either free enzyme or a ChlM-MgD complex. Our results provide an overview of the steady-state kinetics for this enzyme, which are significant given the role of MgP and MgPME in plastid-to-nucleus signalling and their likely critical role in the regulation of this biosynthetic pathway.


Journal of Biological Chemistry | 2009

Metal Ion Selectivity and Substrate Inhibition in the Metal Ion Chelation Catalyzed by Human Ferrochelatase

Ruth E. Davidson; Christopher J. Chesters; James D. Reid

Protoporphyrin IX ferrochelatase (EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX. Ferrochelatase shows specificity, in vitro, for multiple metal ion substrates and exhibits substrate inhibition in the case of zinc, copper, cobalt, and nickel. Zinc is the most biologically significant of these; when iron is depleted, zinc porphyrins are formed physiologically. Examining the kcat/Kmapp ratios for zinc and iron reveals that, in vitro, zinc is the preferred substrate at all concentrations of porphyrin. This is not the observed biological specificity, where zinc porphyrins are abnormal; these data argue for the existence of a specific iron delivery mechanism in vivo. We demonstrate that zinc acts as an uncompetitive substrate inhibitor, suggesting that ferrochelatase acts via an ordered pathway. Steady-state characterization demonstrates that the apparent kcat depends on zinc and shows substrate inhibition. Although porphyrin substrate is not inhibitory, zinc inhibition is enhanced by increasing porphyrin concentration. This indicates that zinc inhibits by binding to an enzyme-product complex (EZnDIX) and is likely to be the second substrate in an ordered mechanism. Our analysis shows that substrate inhibition by zinc is not a mechanism that can promote specificity for iron over zinc, but is instead one that will reduce the production of all metalloporphyrins in the presence of high concentrations of zinc.


Journal of Biological Chemistry | 2013

The Allosteric Role of the AAA+ Domain of ChlD Protein from the Magnesium Chelatase of Synechocystis Species PCC 6803

Nathan B. P. Adams; James D. Reid

Background: Magnesium chelatase catalyzes the first essential step in chlorophyll biosynthesis. Results: Mutations in the AAA+ domain of the magnesium chelatase ChlD subunit reduce but do not abolish catalytic activity. Conclusion: ChlD is an allosteric regulator of magnesium chelatase. Significance: These observations reveal an essential role for the ChlD protein in the first committed stage in chlorophyll biosynthesis. Magnesium chelatase is an AAA+ ATPase that catalyzes the first step in chlorophyll biosynthesis, the energetically unfavorable insertion of a magnesium ion into a porphyrin ring. This enzyme contains two AAA+ domains, one active in the ChlI protein and one inactive in the ChlD protein. Using a series of mutants in the AAA+ domain of ChlD, we show that this site is essential for magnesium chelation and allosterically regulates Mg2+ and MgATP2− binding.


Biochemistry | 2012

Nonequilibrium isotope exchange reveals a catalytically significant enzyme-phosphate complex in the ATP hydrolysis pathway of the AAA(+) ATPase magnesium chelatase.

Nathan B. P. Adams; James D. Reid

Magnesium chelatase is an AAA(+) ATPase that catalyzes the first committed step in chlorophyll biosynthesis. Using nonequilibrium isotope exchange, we show that the ATP hydrolysis reaction proceeds via an enzyme-phosphate complex. Exchange from radiolabeled phosphate to ATP was not observed, offering no support for an enzyme-ADP complex.


Biochemical Journal | 2014

Characterization of the magnesium chelatase from Thermosynechococcus elongatus.

Nathan B. P. Adams; Christopher J. Marklew; Amanda A. Brindley; C. Neil Hunter; James D. Reid

The first committed step in chlorophyll biosynthesis is catalysed by magnesium chelatase (E.C. 6.6.1.1), which uses the free energy of ATP hydrolysis to insert an Mg(2+) ion into the ring of protoporphyrin IX. We have characterized magnesium chelatase from the thermophilic cyanobacterium Thermosynechococcus elongatus. This chelatase is thermostable, with subunit melting temperatures between 55 and 63°C and optimal activity at 50°C. The T. elongatus chelatase (kcat of 0.16 μM/min) shows a Michaelis-Menten-type response to both Mg(2+) (Km of 2.3 mM) and MgATP(2-) (Km of 0.8 mM). The response to porphyrin is more complex; porphyrin inhibits at high concentrations of ChlH, but when the concentration of ChlH is comparable with the other two subunits the response is of a Michaelis-Menten type (at 0.4 μM ChlH, Km is 0.2 μM). Hybrid magnesium chelatases containing a mixture of subunits from the mesophilic Synechocystis and Thermosynechococcus enzymes are active. We generated all six possible hybrid magnesium chelatases; the hybrid chelatase containing Thermosynechococcus ChlD and Synechocystis ChlI and ChlH is not co-operative towards Mg(2+), in contrast with the Synechocystis magnesium chelatase. This loss of co-operativity reveals the significant regulatory role of Synechocystis ChlD.


Biochemical Journal | 2017

The coproporphyrin ferrochelatase of Staphylococcus aureus : mechanistic insights into a regulatory iron binding site.

Charlie Hobbs; James D. Reid; Mark Shepherd

The majority of characterised ferrochelatase enzymes catalyse the final step of classical haem synthesis, inserting ferrous iron into protoporphyrin IX. However, for the recently discovered coproporphyrin-dependent pathway, ferrochelatase catalyses the penultimate reaction where ferrous iron is inserted into coproporphyrin III. Ferrochelatase enzymes from the bacterial phyla Firmicutes and Actinobacteria have previously been shown to insert iron into coproporphyrin, and those from Bacillus subtilis and Staphylococcus aureus are known to be inhibited by elevated iron concentrations. The work herein reports a Km (coproporphyrin III) for S. aureus ferrochelatase of 1.5 µM and it is shown that elevating the iron concentration increases the Km for coproporphyrin III, providing a potential explanation for the observed iron-mediated substrate inhibition. Together, structural modelling, site-directed mutagenesis, and kinetic analyses confirm residue Glu271 as being essential for the binding of iron to the inhibitory regulatory site on S. aureus ferrochelatase, providing a molecular explanation for the observed substrate inhibition patterns. This work therefore has implications for how haem biosynthesis in S. aureus is regulated by iron availability.


Biochemistry | 2015

Five Glutamic Acid Residues in the C-Terminal Domain of the ChlD Subunit Play a Major Role in Conferring Mg2+ Cooperativity upon Magnesium Chelatase

Amanda A. Brindley; Nathan B. P. Adams; C. N. Hunter; James D. Reid

Magnesium chelatase catalyzes the first committed step in chlorophyll biosynthesis by inserting a Mg(2+) ion into protoporphyrin IX in an ATP-dependent manner. The cyanobacterial (Synechocystis) and higher-plant chelatases exhibit a complex cooperative response to free magnesium, while the chelatases from Thermosynechococcus elongatus and photosynthetic bacteria do not. To investigate the basis for this cooperativity, we constructed a series of chimeric ChlD proteins using N-terminal, central, and C-terminal domains from Synechocystis and Thermosynechococcus. We show that five glutamic acid residues in the C-terminal domain play a major role in this process.


Biochemical Journal | 2004

Isomerization of the uncomplexed actinidin molecule: kinetic accessibility of additional steps in enzyme catalysis provided by solvent perturbation.

James D. Reid; Syeed Hussain; Tamara S F Bailey; Sanjiv Sonkaria; Suneal K. Sreedharan; Emrys W. Thomas; Marina Resmini; Keith Brocklehurst

The effects of increasing the content of the aprotic dipolar organic co-solvent acetonitrile on the observed first-order rate constant (k(obs)) of the pre-steady state acylation phases of the hydrolysis of N-acetyl-Phe-Gly methyl thionester catalysed by the cysteine proteinase variants actinidin and papain in sodium acetate buffer, pH 5.3, were investigated by stopped-flow spectral analysis. With low acetonitrile content, plots of k(obs) against [S]0 for the actinidin reaction are linear with an ordinate intercept of magnitude consistent with a five-step mechanism involving a post-acylation conformational change. Increasing the acetonitrile content results in marked deviations of the plots from linearity with a rate minimum around [S]0=150 microM. The unusual negative dependence of k(obs) on [S]0 in the range 25-150 microM is characteristic of a rate-determining isomerization of the free enzyme before substrate binding, additional to the five-step mechanism. There was no evidence for this phenomenon nor for the post-acylation conformational change in the analogous reaction with papain. For this enzyme, however, acetonitrile acts as an inhibitor with approximately uncompetitive characteristics. Possible mechanistic consequences of the differential solvent-perturbed kinetics are indicated. The free enzyme isomerization of actinidin may provide an explanation for the marked difference in sensitivity between this enzyme and papain of binding site-catalytic site signalling in reactions of substrate-derived 2-pyridyl disulphide reactivity probes.


FEBS Letters | 2016

The catalytic power of magnesium chelatase: a benchmark for the AAA+ ATPases

Nathan B. P. Adams; Amanda A. Brindley; C. Neil Hunter; James D. Reid

In the first committed reaction of chlorophyll biosynthesis, magnesium chelatase couples ATP hydrolysis to the thermodynamically unfavorable Mg2+ insertion into protoporphyrin IX (ΔG°′ of circa 25–33 kJ·mol−1). We explored the thermodynamic constraints on magnesium chelatase and demonstrate the effect of nucleotide hydrolysis on both the reaction kinetics and thermodynamics. The enzyme produces a significant rate enhancement (kcat/kuncat of 400 × 106 m) and a catalytic rate enhancement, kcat/KmDIXK0.5Mgkuncat , of 30 × 1015 m−1, increasing to 300 × 1015 m−1 with the activator protein Gun4. This is the first demonstration of the thermodynamic benefit of ATP hydrolysis in the AAA+ family.

Collaboration


Dive into the James D. Reid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Brocklehurst

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

C. N. Hunter

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suneal K. Sreedharan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Surapong Pinitglang

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Syeed Hussain

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Tamara S F Bailey

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge