Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Whitfield is active.

Publication


Featured researches published by James D. Whitfield.


Nature Chemistry | 2010

Towards quantum chemistry on a quantum computer

Benjamin P. Lanyon; James D. Whitfield; Geoffrey Gillett; M. E. Goggin; M. P. Almeida; Ivan Kassal; Jacob Biamonte; Masoud Mohseni; B. J. Powell; Marco Barbieri; Alán Aspuru-Guzik; Andrew White

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.


Annual Review of Physical Chemistry | 2011

Simulating Chemistry Using Quantum Computers

Ivan Kassal; James D. Whitfield; Alejandro Perdomo-Ortiz; Man-Hong Yung; Alán Aspuru-Guzik

The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.


Molecular Physics | 2011

Simulation of electronic structure Hamiltonians using quantum computers

James D. Whitfield; Jacob Biamonte; Alán Aspuru-Guzik

Over the last century, a large number of physical and mathematical developments paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, the lack of computationally efficient methods for the exact simulation of quantum systems on classical computers presents a limitation of current computational approaches. We report, in detail, how a set of pre-computed molecular integrals can be used to explicitly create a quantum circuit, i.e. a sequence of elementary quantum operations, that, when run on a quantum computer, obtains the energy of a molecular system with fixed nuclear geometry using the quantum phase estimation algorithm. We extend several known results related to this idea and discuss the adiabatic state preparation procedure for preparing the input states used in the algorithm. With current and near future quantum devices in mind, we provide a complete example using the hydrogen molecule of how a chemical Hamiltonian can be simulated using a quantum computer.


New Journal of Physics | 2012

Faster quantum chemistry simulation on fault-tolerant quantum computers

N. Cody Jones; James D. Whitfield; Peter L. McMahon; Man-Hong Yung; Rodney Van Meter; Alán Aspuru-Guzik; Yoshihisa Yamamoto

Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay–Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ϵ, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log ϵ) or O(log log ϵ); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride.Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, Quantum Inf. Comput., 6:81, 2006]. For a given approximation error , arbitrary singlequbit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(log ) or O(log log ); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of firstand second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride. PACS numbers: 03.67.Ac, 03.67.Lx, 31.15.A-


Physical Review A | 2010

Quantum stochastic walks: A generalization of classical random walks and quantum walks

James D. Whitfield; César A. Rodríguez-Rosario; Alán Aspuru-Guzik

We introduce the quantum stochastic walk (QSW), which determines the evolution of a generalized quantum-mechanical walk on a graph that obeys a quantum stochastic equation of motion. Using an axiomatic approach, we specify the rules for all possible quantum, classical, and quantum-stochastic transitions from a vertex as defined by its connectivity. We show how the family of possible QSWs encompasses both the classical random walk (CRW) and the quantum walk (QW) as special cases but also includes more general probability distributions. As an example, we study the QSW on a line and the glued tree of depth three to observe the behavior of the QW-to-CRW transition.


Scientific Reports | 2011

Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

Zhaokai Li; Man-Hong Yung; Hongwei Chen; Dawei Lu; James D. Whitfield; Xinhua Peng; Alán Aspuru-Guzik; Jiangfeng Du

Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers


AIP Advances | 2011

Adiabatic quantum simulators

Jacob Biamonte; V. Bergholm; James D. Whitfield; J. Fitzsimons; Alán Aspuru-Guzik

In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured...


ACS Nano | 2015

Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register

Ya Wang; Florian Dolde; Jacob Biamonte; Ryan Babbush; Ville Bergholm; Sen Yang; Ingmar Jakobi; Philipp Neumann; Alán Aspuru-Guzik; James D. Whitfield; Jörg Wrachtrup

Ab initio computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH(+). Moreover, we report an energy uncertainty (given our model basis) of the order of 10(-14) hartree, which is 10 orders of magnitude below the desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides an important step toward a fully scalable solid-state implementation of a quantum chemistry simulator.


Scientific Reports | 2013

Quantum Transport Enhancement by Time-Reversal Symmetry Breaking

Zoltán Zimborás; Mauro Faccin; Zoltán Kádár; James D. Whitfield; Ben P. Lanyon; Jacob Biamonte

Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.


Physical Chemistry Chemical Physics | 2013

Computational complexity in electronic structure

James D. Whitfield; Peter J. Love; Alán Aspuru-Guzik

In quantum chemistry, the price paid by all known efficient model chemistries is either the truncation of the Hilbert space or uncontrolled approximations. Theoretical computer science suggests that these restrictions are not mere shortcomings of the algorithm designers and programmers but could stem from the inherent difficulty of simulating quantum systems. Extensions of computer science and information processing exploiting quantum mechanics has led to new ways of understanding the ultimate limitations of computational power. Interestingly, this perspective helps us understand widely used model chemistries in a new light. In this article, the fundamentals of computational complexity will be reviewed and motivated from the vantage point of chemistry. Then recent results from the computational complexity literature regarding common model chemistries including Hartree-Fock and density functional theory are discussed.

Collaboration


Dive into the James D. Whitfield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Biamonte

Portland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. E. Goggin

Truman State University

View shared research outputs
Top Co-Authors

Avatar

Andrew White

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. P. Almeida

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Marco Barbieri

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge