Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Doutch is active.

Publication


Featured researches published by James Doutch.


Biomacromolecules | 2012

Relations between molecular, crystalline, and lamellar structures of amylopectin.

Torsten Witt; James Doutch; Elliot P. Gilbert; Robert G. Gilbert

Chain (branch) length distributions (CLD) from size-exclusion chromatography of a series of waxy starches were parametrized using both an empirical and a biosynthesis-based method and correlated with their crystalline-amorphous lamellar properties obtained from X-ray scattering. Correlations were best seen with the biosynthesis-based parametrization. This showed for the first time that the following links between the CLD and lamellar parameters, the average interlamellar repeat distance and the distribution of these distances, were decreased by an increase in the proportion of very short branches and were increased by an increase in the proportion of intermediate and longer chains; further, the shoulder and linear sections of the CLD were found to affect the lamellar repeat distance and distribution. These effects are rationalized in terms of branch-length effects on the production of crystallites and the presence of portions of longer branches in the amorphous regions.


Soft Matter | 2016

Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances

Leïla Zerkoune; Sylviane Lesieur; Jean-Luc Putaux; Luc Choisnard; Annabelle Gèze; Denis Wouessidjewe; Borislav Angelov; Corinne Vebert-Nardin; James Doutch; Angelina Angelova

Soft mesoporous hierarchically structured particles were created by the self-assembly of an amphiphilic deep cavitand cyclodextrin βCD-nC10 (degree of substitution n = 7.3), with a nanocavity grafted by multiple alkyl (C10) chains on the secondary face of the βCD macrocycle through enzymatic biotransesterification, and the nonlamellar lipid monoolein (MO). The effect of the non-ionic dispersing agent polysorbate 80 (P80) on the liquid crystalline organization of the nanocarriers and their stability was studied in the context of vesicle-to-cubosome transition. The coexistence of small vesicular and nanosponge membrane objects with bigger nanoparticles with inner multicompartment cubic lattice structures was established as a typical feature of the employed dispersion process. The cryogenic transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) structural analyses revealed the dependence of the internal organization of the self-assembled nanoparticles on the presence of embedded βCD-nC10 deep cavitands in the lipid bilayers. The obtained results indicated that the incorporated amphiphilic βCD-nC10 building blocks stabilize the cubic lattice packing in the lipid membrane particles, which displayed structural features beyond the traditional CD nanosponges. UV-Vis spectroscopy was employed to characterize the nanoencapsulation of a model hydrophobic dimethylphenylazo-naphthol guest compound (Oil red) in the created nanocarriers. In perspective, these dual porosity carriers should be suitable for co-encapsulation and sustained delivery of peptide, protein or siRNA biopharmaceuticals together with small molecular weight drug compounds or imaging agents.


Journal of Agricultural and Food Chemistry | 2014

Structural Changes from Native Waxy Maize Starch Granules to Cold-Water-Soluble Pyrodextrin during Thermal Treatment

Yanjie Bai; Liming Cai; James Doutch; Elliot P. Gilbert; Yong-Cheng Shi

The structural changes occurring during the thermal conversion of insoluble native waxy maize starch granules to cold-water-soluble pyrodextrin under acidic conditions have been investigated by multiple techniques, including synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray scattering, differential scanning calorimetry, and gel permeation chromatography. In a mixture of water/glycerol (20/80, w/w), the SAXS characteristic peak at ca. 0.6 nm(-1) decreased in intensity as pyrodextrin solubility increased. The peak disappeared as pyrodextrin solubility reached 100%. Starch crystal size, its associated melting enthalpy, and pyrodextrin molecular size decreased as solubility increased. Although starch structure changed during thermal conversion, the pyrodextrins appeared identical to the native starch when observed in glycerol under a normal and polarized light microscope. It is proposed that the starch backbone is hydrolyzed by acid in the amorphous region and the crystalline region with starch molecules being hydrolyzed into small molecular fractions but persisting in a radial arrangement.


Langmuir | 2014

Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal

Pieter Bots; Katherine Morris; Rosemary Hibberd; Gareth T. W. Law; J. Frederick W. Mosselmans; Andy Brown; James Doutch; Andrew James Smith; Samuel Shaw

The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.


eLife | 2016

Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level

Daniel Coutandin; Christian Osterburg; Ratnesh Kumar Srivastav; Manuela Sumyk; Sebastian Kehrloesser; Jakob Gebel; Marcel Tuppi; Jens Hannewald; Birgit Schäfer; E. Salah; Sebastian Mathea; Uta Müller-Kuller; James Doutch; Manuel Grez; Stefan Knapp; Volker Dötsch

Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction. DOI: http://dx.doi.org/10.7554/eLife.13909.001


Soft Matter | 2016

On the syneresis of an OPV functionalised dipeptide hydrogel

Ana M. Castilla; Matthew Wallace; Laura L. E. Mears; Emily R. Draper; James Doutch; Sarah E. Rogers; Dave J. Adams

We describe a new dipeptide hydrogel based on an oligophenylene vinylene core. After gelation, the initial network evolves, expelling solvent and resulting in syneresis. We describe this process and the effects in the bulk properties of the material.


Chemistry-an Asian Journal | 2017

Interaction of [VIV O(acac)2 ] with Human Serum Transferrin and Albumin

Isabel Correia; Ielyzaveta Chorna; Isabel Cavaco; Somnath Roy; Maxim L. Kuznetsov; Nádia Ribeiro; Gonçalo C. Justino; Fernanda Marques; Teresa Santos-Silva; Marino F. A. Santos; Hugo M. Santos; José Luis Capelo; James Doutch; João Costa Pessoa

[VO(acac)2 ] is a remarkable vanadium compound and has potential as a therapeutic drug. It is important to clarify how it is transported in blood, but the reports addressing its binding to serum proteins have been contradictory. We use several spectroscopic and mass spectrometric techniques (ESI and MALDI-TOF), small-angle X-ray scattering and size exclusion chromatography (SEC) to characterize solutions containing [VO(acac)2 ] and either human serum apotransferrin (apoHTF) or albumin (HSA). DFT and modeling protein calculations are carried out to disclose the type of binding to apoHTF. The measured circular dichroism spectra, SEC and MALDI-TOF data clearly prove that at least two VO-acac moieties may bind to apoHTF, most probably forming [VIV O(acac)(apoHTF)] complexes with residues of the HTF binding sites. No indication of binding of [VO(acac)2 ] to HSA is obtained. We conclude that VIV O-acac species may be transported in blood by transferrin. At very low complex concentrations speciation calculations suggest that [(VO)(apoHTF)] species form.


Biomacromolecules | 2017

Drying affects the fiber network in low molecular weight hydrogels

Laura L. E. Mears; Emily R. Draper; Ana M. Castilla; Hao Su; Zhuola; Bart Dietrich; Michael C. Nolan; Gregory N. Smith; James Doutch; Sarah E. Rogers; Riaz Akhtar; Honggang Cui; Dave J. Adams

Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct.


Langmuir | 2017

Surfactant–Solvent Interaction Effects on the Micellization of Cationic Surfactants in a Carboxylic Acid-Based Deep Eutectic Solvent

Adrian Sanchez-Fernandez; Oliver S. Hammond; Andrew Jackson; Thomas Arnold; James Doutch; Karen J. Edler

Deep eutectic solvents have been demonstrated to support amphiphile self-assembly, providing potential alternatives as structure-directing agents in the synthesis of nanostructures, and drug delivery. Here we have expanded on this recent research to investigate the self-assembly of alkyltrimethylammonium bromide surfactants in choline chloride:malonic acid deep eutectic solvent and mixtures of the solvent with water. Surface tension and small-angle neutron scattering were used to determine the behavior of the amphiphiles. Surfactants were found to remain active in the solvent, and surface tension measurements revealed changes in the behavior of the surfactants with different levels of hydration. Small-angle neutron scattering shows that in this solvent the micelle shape depends on the surfactant chain length, varying from globular micelles (aspect ratio ∼2) for short chain surfactants to elongated micelles (aspect ratio ∼14) for long chain surfactants even at low surfactant concentration. We suggest that the formation of elongated micelles can be explained through the interaction of the solvent with the surfactant headgroup, since ion-ion interactions between surfactant headgroups and solvent may modify the morphology of the micelles. The presence of water in the deep eutectic solvents promotes an increase in the charge density at the micelle interface and therefore the formation of less elongated, globular micelles.


Journal of Colloid and Interface Science | 2018

Adsorption and self-assembly in methyl ester sulfonate surfactants, their eutectic mixtures and the role of electrolyte

Hui Xu; Peixun Li; Kun Ma; Rebecca J. L. Welbourn; James Doutch; J. Penfold; Robert J. Thomas; David W. Roberts; Jordan T. Petkov; Ken Loon Choo; Soo Yee Khoo

The α-methyl ester sulfonate, MES, anionic surfactants are a potentially important class of sustainable surfactants for a wide range of applications. The eutectic-like Kraft point minimum in the C16 and C18-MES mixtures is an important feature of that potential. Understanding their individual adsorption properties and the surface mixing of the eutectic mixtures are key to their wider exploitation. Neutron reflectivity has been used to investigate the adsorption at the air-water interface of the C16 and C18-MES surfactants and the eutectic mixture of C16 and C18-MES, in aqueous solution and in electrolyte. The micelle mixing of the eutectic mixture is investigated using small angle neutron scattering. The adsorption isotherms for C14 to C18-MES are found to scale with their critical micelle concentration value. The surface and micelle compositions of the C16 and C18-MES eutectic mixture differ from the eutectic composition; with compositions in the limit of high concentrations richer in C16-MES. The mixing properties are described by the pseudo phase approximation with a repulsive interaction between the two surfactants. The impact of the multivalent ions Al3+ on the adsorption at the air-water interface results in a transition from monolayer to multilayer adsorption.

Collaboration


Dive into the James Doutch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Jackson

European Spallation Source

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Penfold

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge